論文の概要: First the worst: Finding better gender translations during beam search
- arxiv url: http://arxiv.org/abs/2104.07429v1
- Date: Thu, 15 Apr 2021 12:53:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-16 15:02:02.046424
- Title: First the worst: Finding better gender translations during beam search
- Title(参考訳): まず最悪なのは、ビーム検索中により良いジェンダー翻訳を見つけること
- Authors: Danielle Saunders and Rosie Sallis and Bill Byrne
- Abstract要約: 文法的ジェンダー翻訳における体系的誤りによるジェンダーバイアスに着目した。
ソース文から自動的に得られる性別特徴を用いて,nbestリストのランク付け実験を行った。
これらの技術を組み合わせることで、追加のバイリンガルデータや追加のNMTモデルを必要としないWinoMT精度が大幅に向上します。
- 参考スコア(独自算出の注目度): 19.921216907778447
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural machine translation inference procedures like beam search generate the
most likely output under the model. This can exacerbate any demographic biases
exhibited by the model. We focus on gender bias resulting from systematic
errors in grammatical gender translation, which can lead to human referents
being misrepresented or misgendered.
Most approaches to this problem adjust the training data or the model. By
contrast, we experiment with simply adjusting the inference procedure. We
experiment with reranking nbest lists using gender features obtained
automatically from the source sentence, and applying gender constraints while
decoding to improve nbest list gender diversity. We find that a combination of
these techniques allows large gains in WinoMT accuracy without requiring
additional bilingual data or an additional NMT model.
- Abstract(参考訳): ビーム探索のようなニューラルマシン翻訳推論は、モデルの下で最も可能性の高い出力を生成する。
これは、モデルによって示されるあらゆる人口統計バイアスを悪化させる可能性がある。
文法的ジェンダー翻訳における体系的な誤りから生じる性別バイアスに注目し, 人間の参照が誤って表現されたり誤解されたりする可能性がある。
この問題に対するほとんどのアプローチは、トレーニングデータまたはモデルを調整する。
対照的に、推論手順を単純に調整して実験する。
我々は,nbestリストをnbestリストに再配置する実験を行い,nbestリストの性別の多様性を向上させるためにデコード中に性別制約を適用した。
これらの手法を組み合わせることで、追加のバイリンガルデータや追加のNMTモデルを必要としないWinoMT精度を大幅に向上させることができる。
関連論文リスト
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
既存の機械翻訳の性別バイアス評価は主に男性と女性の性別に焦点を当てている。
本研究では,AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words) のベンチマークを示す。
本研究では,感情的態度スコア(EAS)に基づく性別バイアス評価手法を提案する。
論文 参考訳(メタデータ) (2024-07-23T08:13:51Z) - A Tale of Pronouns: Interpretability Informs Gender Bias Mitigation for
Fairer Instruction-Tuned Machine Translation [35.44115368160656]
機械翻訳モデルがジェンダーバイアスを示すか否かについて検討する。
We found that IFT model default to male-inflected translations, evengarding female occupational stereotypes。
実装が容易で効果的なバイアス緩和ソリューションを提案する。
論文 参考訳(メタデータ) (2023-10-18T17:36:55Z) - Will the Prince Get True Love's Kiss? On the Model Sensitivity to Gender
Perturbation over Fairytale Texts [87.62403265382734]
近年の研究では、伝統的な妖精は有害な性バイアスを伴っていることが示されている。
本研究は,ジェンダーの摂動に対する頑健さを評価することによって,言語モデルの学習バイアスを評価することを目的とする。
論文 参考訳(メタデータ) (2023-10-16T22:25:09Z) - Target-Agnostic Gender-Aware Contrastive Learning for Mitigating Bias in
Multilingual Machine Translation [28.471506840241602]
ジェンダーバイアスは機械翻訳において重要な問題であり、バイアス軽減技術の研究が進行中である。
本稿では,新しいアプローチに基づくバイアス緩和手法を提案する。
Gender-Aware Contrastive Learning, GACLは、文脈性情報を非明示性単語の表現にエンコードする。
論文 参考訳(メタデータ) (2023-05-23T12:53:39Z) - Mitigating Gender Bias in Distilled Language Models via Counterfactual
Role Reversal [74.52580517012832]
言語エクセルモデルは、性中立性を持つ男女の知識を含むバイアスを受けることができる。
本稿では,複数の学習ロール設定に基づくジェンダー格差を緩和するための新しいアプローチを提案する。
男女極性言語を減少させるモデルは、公平さや下流の分類を改善しない。
論文 参考訳(メタデータ) (2022-03-23T17:34:35Z) - Improving Gender Fairness of Pre-Trained Language Models without
Catastrophic Forgetting [88.83117372793737]
元のトレーニングデータに情報を埋め込むことは、モデルの下流のパフォーマンスを大きなマージンで損なう可能性がある。
本稿では,GEnder Equality Prompt(GEEP)を提案する。
論文 参考訳(メタデータ) (2021-10-11T15:52:16Z) - Collecting a Large-Scale Gender Bias Dataset for Coreference Resolution
and Machine Translation [10.542861450223128]
3つのドメインのコーパスにおいて,ステレオタイプおよび非ステレオタイプなジェンダーロール代入を示す文法パターンが発見された。
我々は、コーパスの品質を手動で検証し、様々なコア参照解像度と機械翻訳モデルにおける性別バイアスを評価する。
論文 参考訳(メタデータ) (2021-09-08T18:14:11Z) - Stereotype and Skew: Quantifying Gender Bias in Pre-trained and
Fine-tuned Language Models [5.378664454650768]
本稿では,文脈言語モデルにおける性別バイアスの定量化と分析を行う,スキューとステレオタイプという2つの直感的な指標を提案する。
性別のステレオタイプは、アウト・オブ・ボックスモデルにおける性別の歪とほぼ負の相関関係にあり、これらの2種類のバイアスの間にトレードオフが存在することを示唆している。
論文 参考訳(メタデータ) (2021-01-24T10:57:59Z) - Mitigating Gender Bias in Captioning Systems [56.25457065032423]
ほとんどのキャプションモデルは性別バイアスを学習し、特に女性にとって高い性別予測エラーにつながる。
本稿では, 視覚的注意を自己指導し, 正しい性的な視覚的証拠を捉えるためのガイド付き注意画像キャプチャーモデル(GAIC)を提案する。
論文 参考訳(メタデータ) (2020-06-15T12:16:19Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z) - Reducing Gender Bias in Neural Machine Translation as a Domain
Adaptation Problem [21.44025591721678]
NLPタスクのトレーニングデータは、男性よりも女性に言及する文が少ないという性別バイアスを呈することが多い。
最近のWinoMTチャレンジセットでは、この効果を直接測定することができます。
私たちは、信頼できる性別バランスの例の小さなセットでトランスファーラーニングを使用します。
論文 参考訳(メタデータ) (2020-04-09T11:55:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。