A simple approach to characterizing band topology in bosonic pairing
Hamiltonians
- URL: http://arxiv.org/abs/2104.07449v2
- Date: Tue, 22 Jun 2021 13:55:34 GMT
- Title: A simple approach to characterizing band topology in bosonic pairing
Hamiltonians
- Authors: Gaurav Chaudhary, Michael Levin, and Aashish A. Clerk
- Abstract summary: We revisit the problem of characterizing band topology in dynamically-stable quadratic bosonic Hamiltonians that do not conserve particle number.
We show this problem can be rigorously addressed by a smooth and local adiabatic mapping procedure to a particle number conserving Hamiltonian.
Our approach shows that particle non-conserving bosonic Hamiltonians can be classified using known approaches for fermionic models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We revisit the problem of characterizing band topology in dynamically-stable
quadratic bosonic Hamiltonians that do not conserve particle number. We show
this problem can be rigorously addressed by a smooth and local adiabatic
mapping procedure to a particle number conserving Hamiltonian. In contrast to a
generic fermionic pairing Hamiltonian, such a mapping can always be constructed
for bosons. Our approach shows that particle non-conserving bosonic
Hamiltonians can be classified using known approaches for fermionic models. It
also provides a simple means for identifying and calculating appropriate
topological invariants. We also explicitly study dynamically stable but
non-positive definite Hamiltonians (as arise frequently in driven photonic
systems). We show that in this case, each band gap is characterized by two
distinct invariants.
Related papers
- On the Bisognano-Wichmann entanglement Hamiltonian of nonrelativistic fermions [0.0]
We study the ground-state entanglement Hamiltonian of free nonrelativistic fermions for semi-infinite domains in one dimension.
We prove that the Bisognano-Wichmann form of the entanglement Hamiltonian becomes exact.
arXiv Detail & Related papers (2024-10-21T18:55:23Z) - Extension of exactly-solvable Hamiltonians using symmetries of Lie
algebras [0.0]
We show that a linear combination of operators forming a modest size Lie algebra can be substituted by determinants of the Lie algebra symmetries.
The new class of solvable Hamiltonians can be measured efficiently using quantum circuits with gates that depend on the result of a mid-circuit measurement of the symmetries.
arXiv Detail & Related papers (2023-05-29T17:19:56Z) - Spectral form factor in a minimal bosonic model of many-body quantum
chaos [1.3793594968500609]
We study spectral form factor in periodically-kicked bosonic chains.
We numerically find a nontrivial systematic system-size dependence of the Thouless time.
arXiv Detail & Related papers (2022-03-10T15:56:24Z) - Regularized Zero-Range Hamiltonian for a Bose Gas with an Impurity [77.34726150561087]
We study the Hamiltonian for a system of N identical bosons interacting with an impurity.
We introduce a three-body force acting at short distances.
The effect of this force is to reduce to zero the strength of the zero-range interaction between two particles.
arXiv Detail & Related papers (2022-02-25T15:34:06Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Does causal dynamics imply local interactions? [0.0]
We consider quantum systems with causal dynamics in discrete spacetimes, also known as quantum cellular automata (QCA)
We ask if any of the Hamiltonians generating a QCA unitary is local in some sense, and we obtain two very different answers.
arXiv Detail & Related papers (2020-06-18T17:40:42Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - Restoring number conservation in quadratic bosonic Hamiltonians with
dualities [0.0]
Number-non-conserving terms in quadratic bosonic Hamiltonians can induce unwanted dynamical instabilities.
We show that as long as dynamical stability holds, one may always construct a non-trivial dual (unitarily equivalent) number-conserving bosonic Hamiltonian.
arXiv Detail & Related papers (2020-04-16T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.