論文の概要: Effect of Post-processing on Contextualized Word Representations
- arxiv url: http://arxiv.org/abs/2104.07456v1
- Date: Thu, 15 Apr 2021 13:40:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-16 15:15:57.477260
- Title: Effect of Post-processing on Contextualized Word Representations
- Title(参考訳): 後処理が文脈的単語表現に及ぼす影響
- Authors: Hassan Sajjad and Firoj Alam and Fahim Dalvi and Nadir Durrani
- Abstract要約: 静的埋め込みの事後処理は、語彙レベルとシーケンスレベルのタスクの両方のパフォーマンスを改善するために示されてきた。
事前学習した言語モデルの異なる層から得られた文脈的埋め込みに対する後処理の有用性を疑問視する。
- 参考スコア(独自算出の注目度): 20.856802441794162
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Post-processing of static embedding has beenshown to improve their
performance on both lexical and sequence-level tasks. However, post-processing
for contextualized embeddings is an under-studied problem. In this work, we
question the usefulness of post-processing for contextualized embeddings
obtained from different layers of pre-trained language models. More
specifically, we standardize individual neuron activations using z-score,
min-max normalization, and by removing top principle components using the
all-but-the-top method. Additionally, we apply unit length normalization to
word representations. On a diverse set of pre-trained models, we show that
post-processing unwraps vital information present in the representations for
both lexical tasks (such as word similarity and analogy)and sequence
classification tasks. Our findings raise interesting points in relation to
theresearch studies that use contextualized representations, and suggest
z-score normalization as an essential step to consider when using them in an
application.
- Abstract(参考訳): 静的埋め込みの事後処理は、語彙レベルとシーケンスレベルのタスクの両方のパフォーマンスを改善するために示されてきた。
しかし、文脈的埋め込みに対する後処理は未研究の問題である。
本研究では,事前学習した言語モデルの異なる層から得られた文脈的埋め込みに対する後処理の有用性を疑問視する。
具体的には、zスコア、min-max正規化、およびAll-but-the-top法によるトップ原理成分の除去により、個々のニューロンの活性化を標準化する。
さらに,単語表現に単位長正規化を適用する。
事前訓練されたモデルの多種多様なセットにおいて、後処理は語彙的タスク(単語類似性や類似性など)とシーケンス分類タスクの両方の表現に存在する重要な情報であることを示す。
以上の知見は,文脈化表現を用いたテレグラフ研究に関連する興味深い点を示し,z-score正規化をアプリケーションで使用する際に考慮すべき重要なステップとして提案する。
関連論文リスト
- CAST: Corpus-Aware Self-similarity Enhanced Topic modelling [16.562349140796115]
CAST: Corpus-Aware Self-similarity Enhanced Topic modelling, a novel topic modelling methodを紹介する。
機能的単語が候補話題語として振る舞うのを防ぐための効果的な指標として自己相似性を見出した。
提案手法は,生成したトピックの一貫性と多様性,およびノイズの多いデータを扱うトピックモデルの能力を大幅に向上させる。
論文 参考訳(メタデータ) (2024-10-19T15:27:11Z) - Probing Context Localization of Polysemous Words in Pre-trained Language Model Sub-Layers [12.610445666406898]
プレトレーニング言語モデル(PLM)の細粒度サブレイヤ表現に符号化された文脈化の程度について検討する。
文脈化へのサブレイヤの主な貢献を識別するために、まず、最小限の異なる文対における多文単語のサブレイヤ表現を抽出する。
また,これらのサブレイヤ表現に符号化された文脈化情報の強みを実証的にローカライズする。
論文 参考訳(メタデータ) (2024-09-21T10:42:07Z) - Conjunct Resolution in the Face of Verbal Omissions [51.220650412095665]
本稿では,テキスト上で直接動作する接続分解タスクを提案し,コーディネーション構造に欠けている要素を復元するために,分割・言い換えパラダイムを利用する。
クラウドソースアノテーションによる自然に発生する動詞の省略例を10万件以上を含む,大規模なデータセットをキュレートする。
我々は、このタスクのために様々な神経ベースラインをトレーニングし、最良の手法が適切なパフォーマンスを得る一方で、改善のための十分なスペースを残していることを示す。
論文 参考訳(メタデータ) (2023-05-26T08:44:02Z) - A Comprehensive Empirical Evaluation of Existing Word Embedding
Approaches [5.065947993017158]
既存の単語埋め込み手法の特徴を概説し,多くの分類タスクについて解析する。
伝統的なアプローチでは、主に単語表現を生成するために行列分解を使い、言語の意味的および構文的規則性をうまく捉えることができない。
一方、ニューラルネットワークに基づくアプローチは、言語の洗練された規則性を捕捉し、生成した単語表現における単語関係を保存することができる。
論文 参考訳(メタデータ) (2023-03-13T15:34:19Z) - Revisiting text decomposition methods for NLI-based factuality scoring
of summaries [9.044665059626958]
細粒度分解が必ずしも事実性スコアの勝利戦略であるとは限らないことを示す。
また,従来提案されていたエンテーメントに基づくスコアリング手法の小さな変更により,性能が向上することを示した。
論文 参考訳(メタデータ) (2022-11-30T09:54:37Z) - Exploiting Word Semantics to Enrich Character Representations of Chinese
Pre-trained Models [12.0190584907439]
本稿では,単語構造を利用して語彙意味を事前学習したモデルの文字表現に統合する手法を提案する。
提案手法は,中国の異なるNLPタスクにおけるBERT,BERT-wwm,ERNIEよりも優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2022-07-13T02:28:08Z) - Retrieval-based Spatially Adaptive Normalization for Semantic Image
Synthesis [68.1281982092765]
本稿では,Retrieval-based spatially AdaptIve normalization (RESAIL) と呼ばれる新しい正規化モジュールを提案する。
RESAILは、正規化アーキテクチャに対するピクセルレベルのきめ細かいガイダンスを提供する。
いくつかの挑戦的なデータセットの実験により、RESAILは定量的メトリクス、視覚的品質、主観的評価の観点から、最先端技術に対して好意的に機能することが示された。
論文 参考訳(メタデータ) (2022-04-06T14:21:39Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
シンタックスとは異なり、セマンティクスは今日の事前訓練モデルによって表面化されないことを示す。
次に、畳み込みグラフエンコーダを使用して、タスク固有の微調整にセマンティック解析を明示的に組み込む。
論文 参考訳(メタデータ) (2020-12-10T01:27:24Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
アスペクトベース感情分析のための弱教師付きアプローチを提案する。
We learn sentiment, aspects> joint topic embeddeds in the word embedding space。
次に、ニューラルネットワークを用いて単語レベルの識別情報を一般化する。
論文 参考訳(メタデータ) (2020-10-13T21:33:24Z) - Automated Concatenation of Embeddings for Structured Prediction [75.44925576268052]
本稿では, 埋め込みの自動結合(ACE)を提案し, 構造予測タスクにおける埋め込みのより優れた結合を見つけるプロセスを自動化する。
我々は、強化学習の戦略に従い、制御器のパラメータを最適化し、タスクモデルの精度に基づいて報酬を計算する。
論文 参考訳(メタデータ) (2020-10-10T14:03:20Z) - Pseudo-Convolutional Policy Gradient for Sequence-to-Sequence
Lip-Reading [96.48553941812366]
唇読解は唇運動系列から音声内容を推測することを目的としている。
seq2seqモデルの伝統的な学習プロセスには2つの問題がある。
本稿では,これら2つの問題に対処するために,PCPGに基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2020-03-09T09:12:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。