論文の概要: Efficient Click-Through Rate Prediction for Developing Countries via
Tabular Learning
- arxiv url: http://arxiv.org/abs/2104.07553v1
- Date: Thu, 15 Apr 2021 16:07:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-16 19:42:03.285767
- Title: Efficient Click-Through Rate Prediction for Developing Countries via
Tabular Learning
- Title(参考訳): 表型学習による途上国の効率的なクリックスルー率予測
- Authors: Joonyoung Yi, Buru Chang
- Abstract要約: CTR(Click-Through Rate)予測モデルは,限られた計算資源のため,展開が困難である。
本稿では,表型学習モデルがCTR予測においてより効率的かつ有効であることを示す。
- 参考スコア(独自算出の注目度): 2.916402752324148
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the rapid growth of online advertisement in developing countries,
existing highly over-parameterized Click-Through Rate (CTR) prediction models
are difficult to be deployed due to the limited computing resources. In this
paper, by bridging the relationship between CTR prediction task and tabular
learning, we present that tabular learning models are more efficient and
effective in CTR prediction than over-parameterized CTR prediction models.
Extensive experiments on eight public CTR prediction datasets show that tabular
learning models outperform twelve state-of-the-art CTR prediction models.
Furthermore, compared to over-parameterized CTR prediction models, tabular
learning models can be fast trained without expensive computing resources
including high-performance GPUs. Finally, through an A/B test on an actual
online application, we show that tabular learning models improve not only
offline performance but also the CTR of real users.
- Abstract(参考訳): 発展途上国におけるオンライン広告の急速な成長にもかかわらず、既存のctr予測モデルは、計算資源が限られているため、デプロイが困難である。
本稿では, CTR予測タスクと表型学習の関係をブリッジすることで, CTR予測モデルよりも表型学習モデルの方が効率的かつ効果的であることを示す。
8つの公開CTR予測データセットに対する大規模な実験により、表型学習モデルは12の最先端CTR予測モデルより優れていることが示された。
さらに、過パラメータのCTR予測モデルと比較して、高性能GPUを含む高価なコンピューティングリソースを使わずに、表型学習モデルを高速に訓練することができる。
最後に,実際のオンラインアプリケーション上でのa/bテストを通じて,表型学習モデルがオフラインパフォーマンスだけでなく,実際のユーザのctrも改善することを示す。
関連論文リスト
- Investigating the Robustness of Counterfactual Learning to Rank Models: A Reproducibility Study [61.64685376882383]
ランク付け学習(CLTR: Counterfactual Learning to rank)は、IRコミュニティにおいて、ログ化された大量のユーザインタラクションデータを活用してランキングモデルをトレーニングする能力において、大きな注目を集めている。
本稿では,複雑かつ多様な状況における既存のCLTRモデルのロバスト性について検討する。
その結果, DLAモデルとIPS-DCMは, PS-PBMやPSSよりも, オフラインの確率推定による堅牢性が高いことがわかった。
論文 参考訳(メタデータ) (2024-04-04T10:54:38Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
本稿では,PILOTとして知られるモデルベース連続学習ツールボックスについて紹介する。
一方、PILOTはL2P、DualPrompt、CODA-Promptといった事前学習モデルに基づいて、最先端のクラスインクリメンタル学習アルゴリズムを実装している。
一方、PILOTは、事前学習されたモデルの文脈に典型的なクラス増分学習アルゴリズムを適合させ、それらの効果を評価する。
論文 参考訳(メタデータ) (2023-09-13T17:55:11Z) - DELTA: Dynamic Embedding Learning with Truncated Conscious Attention for
CTR Prediction [61.68415731896613]
CTR(Click-Through Rate)予測は、製品とコンテンツの推奨において重要なタスクである。
本稿では,CTR予測のための動的埋め込み学習を実現するモデルを提案する。
論文 参考訳(メタデータ) (2023-05-03T12:34:45Z) - Directed Acyclic Graph Factorization Machines for CTR Prediction via
Knowledge Distillation [65.62538699160085]
本稿では,既存の複雑な相互作用モデルから,知識蒸留によるCTR予測のための高次特徴相互作用を学習するための非巡回グラフファクトリゼーションマシン(KD-DAGFM)を提案する。
KD-DAGFMは、オンラインとオフラインの両方の実験において、最先端のFLOPの21.5%未満で最高の性能を達成する。
論文 参考訳(メタデータ) (2022-11-21T03:09:42Z) - Continual Learning for CTR Prediction: A Hybrid Approach [37.668467137218286]
CTR予測のためのハイブリッドなContinual Learning FrameworkであるCOLFを提案する。
COLFはメモリベースのモジュールアーキテクチャを持ち、継続的な適応、学習、予測を行うように設計されている。
中国の大手ショッピングアプリから収集したクリックログに関する実証的評価は,既存の方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-18T11:30:57Z) - Looking at CTR Prediction Again: Is Attention All You Need? [4.873362301533825]
クリックスルー率(CTR)予測は、ウェブ検索、レコメンデーションシステム、オンライン広告表示における重要な問題です。
経済学において離散選択モデルを用いてCTR予測問題を再定義し,自己認識機構に基づく汎用ニューラルネットワークフレームワークを提案する。
既存のCTR予測モデルのほとんどは、提案された一般的なフレームワークと一致することが判明した。
論文 参考訳(メタデータ) (2021-05-12T10:27:14Z) - Ensemble Knowledge Distillation for CTR Prediction [46.92149090885551]
我々は知識蒸留(KD)に基づく新しいモデルトレーニング戦略を提案する。
KDは、教師モデルから学んだ知識を学生モデルに移すための教師学生学習フレームワークである。
本稿では,教師のゲーティングや蒸留損失による早期停止など,CTR予測のアンサンブル化を促進する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-11-08T23:37:58Z) - BARS-CTR: Open Benchmarking for Click-Through Rate Prediction [30.000261789268063]
クリックスルー率(CTR)予測は多くのアプリケーションにとって重要なタスクである。
近年、CTR予測は学術と産業の両方で広く研究されている。
CTR予測研究には、標準化されたベンチマークと一様評価プロトコルがまだ欠けている。
論文 参考訳(メタデータ) (2020-09-12T13:34:22Z) - Iterative Boosting Deep Neural Networks for Predicting Click-Through
Rate [15.90144113403866]
クリックスルーレート(CTR)は、特定の項目のクリックの比率を、そのビューの総数に反映する。
XdBoostは、従来の機械学習の強化メカニズムの影響を受け、反復的な3段階ニューラルネットワークモデルである。
論文 参考訳(メタデータ) (2020-07-26T09:41:16Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
本稿では,深層学習に基づく知識追跡(DLKT)モデルの解釈可能性問題に対処するポストホック手法を提案する。
具体的には、RNNに基づくDLKTモデルを解釈するために、レイヤワイズ関連伝搬法(LRP)を適用することに焦点をあてる。
実験結果から,DLKTモデルの予測をLRP法で解釈できることを示す。
論文 参考訳(メタデータ) (2020-05-13T04:03:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。