論文の概要: MetaXL: Meta Representation Transformation for Low-resource
Cross-lingual Learning
- arxiv url: http://arxiv.org/abs/2104.07908v1
- Date: Fri, 16 Apr 2021 06:15:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-19 14:36:19.935560
- Title: MetaXL: Meta Representation Transformation for Low-resource
Cross-lingual Learning
- Title(参考訳): MetaXL:低リソース多言語学習のためのメタ表現変換
- Authors: Mengzhou Xia, Guoqing Zheng, Subhabrata Mukherjee, Milad Shokouhi,
Graham Neubig, Ahmed Hassan Awadallah
- Abstract要約: 言語間移動学習は低リソース言語のための機能的NLPシステムを構築するための最も効果的な方法の1つである。
MetaXLは、メタラーニングベースのフレームワークで、表現を補助言語からターゲット言語にジャッジに変換することを学ぶ。
- 参考スコア(独自算出の注目度): 91.5426763812547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The combination of multilingual pre-trained representations and cross-lingual
transfer learning is one of the most effective methods for building functional
NLP systems for low-resource languages. However, for extremely low-resource
languages without large-scale monolingual corpora for pre-training or
sufficient annotated data for fine-tuning, transfer learning remains an
under-studied and challenging task. Moreover, recent work shows that
multilingual representations are surprisingly disjoint across languages,
bringing additional challenges for transfer onto extremely low-resource
languages. In this paper, we propose MetaXL, a meta-learning based framework
that learns to transform representations judiciously from auxiliary languages
to a target one and brings their representation spaces closer for effective
transfer. Extensive experiments on real-world low-resource languages - without
access to large-scale monolingual corpora or large amounts of labeled data -
for tasks like cross-lingual sentiment analysis and named entity recognition
show the effectiveness of our approach. Code for MetaXL is publicly available
at github.com/microsoft/MetaXL.
- Abstract(参考訳): 多言語事前訓練表現と多言語間移動学習の組み合わせは、低リソース言語のための関数型NLPシステムを構築する上で最も効果的な方法の1つである。
しかしながら、事前学習や微調整のための十分な注釈データを持つ、大規模な単言語コーパスを持たない超低リソース言語では、転送学習は未熟で難しい課題である。
さらに、最近の研究は、多言語表現が驚くほど言語間で相容れないことを示し、非常に低リソースな言語に移行するためのさらなる課題をもたらしている。
本稿では,メタ学習をベースとしたメタXLを提案する。メタXLは,補助言語から対象言語へ視覚的に表現を変換し,その表現空間を効果的に伝達する。
大規模モノリンガルコーパスや大量のラベル付きデータにアクセスできるような,現実世界の低リソース言語に関する大規模な実験は,我々のアプローチの有効性を示している。
MetaXLのコードはgithub.com/microsoft/MetaXLで公開されている。
関連論文リスト
- Extracting and Transferring Abilities For Building Multi-lingual Ability-enhanced Large Language Models [104.96990850774566]
我々は,MAETと命名された多言語能力抽出と伝達手法を提案する。
我々のキーとなる考え方は、大きな言語モデルから言語に依存しない能力に関する重みを分解し抽出することである。
実験結果から,MAETは高度能力の抽出と伝達を効果的に行うことができ,トレーニングベースライン法よりも優れることがわかった。
論文 参考訳(メタデータ) (2024-10-10T11:23:18Z) - Trans-Tokenization and Cross-lingual Vocabulary Transfers: Language Adaptation of LLMs for Low-Resource NLP [13.662528492286528]
本稿では,この課題に対処し,より効率的な言語適応を実現するために,新たな言語間語彙移動戦略であるトランストークン化を提案する。
提案手法は,ソースコードからの意味論的に類似したトークン埋め込みの重み付け平均を用いて,ターゲット言語のトークン埋め込みを初期化することにより,高リソースのモノリンガルLLMを未知のターゲット言語に適応することに焦点を当てる。
複数のスワップ可能な言語モデリングヘッドと埋め込みテーブルを備えたモデルであるHydra LLMを導入し、トランストークン化戦略の能力をさらに拡張した。
論文 参考訳(メタデータ) (2024-08-08T08:37:28Z) - ColBERT-XM: A Modular Multi-Vector Representation Model for Zero-Shot
Multilingual Information Retrieval [10.664434993386523]
現在のアプローチは、非英語言語における高品質なラベル付きデータの欠如を回避している。
本稿では,単一の高リソース言語のリッチデータから学習するモジュール型高密度検索モデルを提案する。
論文 参考訳(メタデータ) (2024-02-23T02:21:24Z) - Enhancing Multilingual Capabilities of Large Language Models through
Self-Distillation from Resource-Rich Languages [60.162717568496355]
大規模言語モデル(LLM)は多言語コーパスで事前訓練されている。
彼らのパフォーマンスは、いくつかのリソース豊富な言語と比較して、ほとんどの言語でまだ遅れています。
論文 参考訳(メタデータ) (2024-02-19T15:07:32Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - MetaXLR -- Mixed Language Meta Representation Transformation for
Low-resource Cross-lingual Learning based on Multi-Armed Bandit [0.0]
データ駆動方式で選択した複数のソース言語を利用する拡張アプローチを提案する。
我々は,同じ量のデータを使用しながら,非常に低リソース言語に対するNERタスクにおける技術結果の状態を達成した。
論文 参考訳(メタデータ) (2023-05-31T18:22:33Z) - Improving Cross-lingual Information Retrieval on Low-Resource Languages
via Optimal Transport Distillation [21.057178077747754]
本稿では,低リソースな言語間情報検索のためのOPTICAL: Optimal Transport 蒸留法を提案する。
クエリドキュメントマッチングの知識から言語間知識を分離することにより、OPTICALは蒸留訓練のためのbitextデータのみを必要とする。
実験結果から,OPTICALは最小限のトレーニングデータにより,低リソース言語上での強いベースラインを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-01-29T22:30:36Z) - Bootstrapping Multilingual Semantic Parsers using Large Language Models [28.257114724384806]
複数の言語にまたがって英語データセットを転送するTranslation-trainパラダイムは、タスク固有の多言語モデルをトレーニングする上で重要な要素である。
本稿では,多言語意味解析の課題を考察し,英語データセットを複数言語に翻訳する大規模言語モデル(LLM)の有効性と柔軟性を示す。
論文 参考訳(メタデータ) (2022-10-13T19:34:14Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
我々は,XLMファインタニングの入力として言語間データを利用する拡張融合法を提案する。
推論中は、ターゲット言語で入力されたテキストとソース言語の翻訳に基づいて予測を行う。
この問題に対処するため,対象言語における翻訳テキストのための自動生成ソフト擬似ラベルに基づくモデル学習のためのKL分割自己学習損失を提案する。
論文 参考訳(メタデータ) (2020-09-10T22:42:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。