OmniFlow: Human Omnidirectional Optical Flow
- URL: http://arxiv.org/abs/2104.07960v1
- Date: Fri, 16 Apr 2021 08:25:20 GMT
- Title: OmniFlow: Human Omnidirectional Optical Flow
- Authors: Roman Seidel, Andr\'e Apitzsch, Gangolf Hirtz
- Abstract summary: Our paper presents OmniFlow: a new synthetic omnidirectional human optical flow dataset.
Based on a rendering engine we create a naturalistic 3D indoor environment with textured rooms, characters, actions, objects, illumination and motion blur.
The simulation has as output rendered images of household activities and the corresponding forward and backward optical flow.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optical flow is the motion of a pixel between at least two consecutive video
frames and can be estimated through an end-to-end trainable convolutional
neural network. To this end, large training datasets are required to improve
the accuracy of optical flow estimation. Our paper presents OmniFlow: a new
synthetic omnidirectional human optical flow dataset. Based on a rendering
engine we create a naturalistic 3D indoor environment with textured rooms,
characters, actions, objects, illumination and motion blur where all components
of the environment are shuffled during the data capturing process. The
simulation has as output rendered images of household activities and the
corresponding forward and backward optical flow. To verify the data for
training volumetric correspondence networks for optical flow estimation we
train different subsets of the data and test on OmniFlow with and without
Test-Time-Augmentation. As a result we have generated 23,653 image pairs and
corresponding forward and backward optical flow. Our dataset can be downloaded
from: https://mytuc.org/byfs
Related papers
- ScaleFlow++: Robust and Accurate Estimation of 3D Motion from Video [26.01796507893086]
This paper proposes a 3D motion perception method called ScaleFlow++ that is easy to generalize.
With just a pair of RGB images, ScaleFlow++ can robustly estimate optical flow and motion-in-depth (MID)
On KITTI, ScaleFlow++ achieved the best monocular scene flow estimation performance, reducing SF-all from 6.21 to 5.79.
arXiv Detail & Related papers (2024-09-16T11:59:27Z) - ScaleFlow++: Robust and Accurate Estimation of 3D Motion from Video [15.629496237910999]
This paper proposes a 3D motion perception method called ScaleFlow++ that is easy to generalize.
With just a pair of RGB images, ScaleFlow++ can robustly estimate optical flow and motion-in-depth (MID)
On KITTI, ScaleFlow++ achieved the best monocular scene flow estimation performance, reducing SF-all from 6.21 to 5.79.
arXiv Detail & Related papers (2024-07-13T07:58:48Z) - TransFlow: Transformer as Flow Learner [22.727953339383344]
We propose TransFlow, a pure transformer architecture for optical flow estimation.
It provides more accurate correlation and trustworthy matching in flow estimation.
It recovers more compromised information in flow estimation through long-range temporal association in dynamic scenes.
arXiv Detail & Related papers (2023-04-23T03:11:23Z) - BlinkFlow: A Dataset to Push the Limits of Event-based Optical Flow Estimation [76.66876888943385]
Event cameras provide high temporal precision, low data rates, and high dynamic range visual perception.
We present a novel simulator, BlinkSim, for the fast generation of large-scale data for event-based optical flow.
arXiv Detail & Related papers (2023-03-14T09:03:54Z) - Optical flow estimation from event-based cameras and spiking neural
networks [0.4899818550820575]
Event-based sensors are an excellent fit for Spiking Neural Networks (SNNs)
We propose a U-Net-like SNN which, after supervised training, is able to make dense optical flow estimations.
Thanks to separable convolutions, we have been able to develop a light model that can nonetheless yield reasonably accurate optical flow estimates.
arXiv Detail & Related papers (2023-02-13T16:17:54Z) - Deep Dynamic Scene Deblurring from Optical Flow [53.625999196063574]
Deblurring can provide visually more pleasant pictures and make photography more convenient.
It is difficult to model the non-uniform blur mathematically.
We develop a convolutional neural network (CNN) to restore the sharp images from the deblurred features.
arXiv Detail & Related papers (2023-01-18T06:37:21Z) - RealFlow: EM-based Realistic Optical Flow Dataset Generation from Videos [28.995525297929348]
RealFlow is a framework that can create large-scale optical flow datasets directly from unlabeled realistic videos.
We first estimate optical flow between a pair of video frames, and then synthesize a new image from this pair based on the predicted flow.
Our approach achieves state-of-the-art performance on two standard benchmarks compared with both supervised and unsupervised optical flow methods.
arXiv Detail & Related papers (2022-07-22T13:33:03Z) - SCFlow: Optical Flow Estimation for Spiking Camera [50.770803466875364]
Spiking camera has enormous potential in real applications, especially for motion estimation in high-speed scenes.
Optical flow estimation has achieved remarkable success in image-based and event-based vision, but % existing methods cannot be directly applied in spike stream from spiking camera.
This paper presents, SCFlow, a novel deep learning pipeline for optical flow estimation for spiking camera.
arXiv Detail & Related papers (2021-10-08T06:16:45Z) - AutoFlow: Learning a Better Training Set for Optical Flow [62.40293188964933]
AutoFlow is a method to render training data for optical flow.
AutoFlow achieves state-of-the-art accuracy in pre-training both PWC-Net and RAFT.
arXiv Detail & Related papers (2021-04-29T17:55:23Z) - Learning optical flow from still images [53.295332513139925]
We introduce a framework to generate accurate ground-truth optical flow annotations quickly and in large amounts from any readily available single real picture.
We virtually move the camera in the reconstructed environment with known motion vectors and rotation angles.
When trained with our data, state-of-the-art optical flow networks achieve superior generalization to unseen real data.
arXiv Detail & Related papers (2021-04-08T17:59:58Z) - Optical Flow Estimation from a Single Motion-blurred Image [66.2061278123057]
Motion blur in an image may have practical interests in fundamental computer vision problems.
We propose a novel framework to estimate optical flow from a single motion-blurred image in an end-to-end manner.
arXiv Detail & Related papers (2021-03-04T12:45:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.