RealFlow: EM-based Realistic Optical Flow Dataset Generation from Videos
- URL: http://arxiv.org/abs/2207.11075v1
- Date: Fri, 22 Jul 2022 13:33:03 GMT
- Title: RealFlow: EM-based Realistic Optical Flow Dataset Generation from Videos
- Authors: Yunhui Han, Kunming Luo, Ao Luo, Jiangyu Liu, Haoqiang Fan, Guiming
Luo, Shuaicheng Liu
- Abstract summary: RealFlow is a framework that can create large-scale optical flow datasets directly from unlabeled realistic videos.
We first estimate optical flow between a pair of video frames, and then synthesize a new image from this pair based on the predicted flow.
Our approach achieves state-of-the-art performance on two standard benchmarks compared with both supervised and unsupervised optical flow methods.
- Score: 28.995525297929348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Obtaining the ground truth labels from a video is challenging since the
manual annotation of pixel-wise flow labels is prohibitively expensive and
laborious. Besides, existing approaches try to adapt the trained model on
synthetic datasets to authentic videos, which inevitably suffers from domain
discrepancy and hinders the performance for real-world applications. To solve
these problems, we propose RealFlow, an Expectation-Maximization based
framework that can create large-scale optical flow datasets directly from any
unlabeled realistic videos. Specifically, we first estimate optical flow
between a pair of video frames, and then synthesize a new image from this pair
based on the predicted flow. Thus the new image pairs and their corresponding
flows can be regarded as a new training set. Besides, we design a Realistic
Image Pair Rendering (RIPR) module that adopts softmax splatting and
bi-directional hole filling techniques to alleviate the artifacts of the image
synthesis. In the E-step, RIPR renders new images to create a large quantity of
training data. In the M-step, we utilize the generated training data to train
an optical flow network, which can be used to estimate optical flows in the
next E-step. During the iterative learning steps, the capability of the flow
network is gradually improved, so is the accuracy of the flow, as well as the
quality of the synthesized dataset. Experimental results show that RealFlow
outperforms previous dataset generation methods by a considerably large margin.
Moreover, based on the generated dataset, our approach achieves
state-of-the-art performance on two standard benchmarks compared with both
supervised and unsupervised optical flow methods. Our code and dataset are
available at https://github.com/megvii-research/RealFlow
Related papers
- MemFlow: Optical Flow Estimation and Prediction with Memory [54.22820729477756]
We present MemFlow, a real-time method for optical flow estimation and prediction with memory.
Our method enables memory read-out and update modules for aggregating historical motion information in real-time.
Our approach seamlessly extends to the future prediction of optical flow based on past observations.
arXiv Detail & Related papers (2024-04-07T04:56:58Z) - MPI-Flow: Learning Realistic Optical Flow with Multiplane Images [18.310665144874775]
We investigate generating realistic optical flow datasets from real-world images.
To generate highly realistic new images, we construct a layered depth representation, known as multiplane images (MPI), from single-view images.
To ensure the realism of motion, we present an independent object motion module that can separate the camera and dynamic object motion in MPI.
arXiv Detail & Related papers (2023-09-13T04:31:00Z) - Rethinking Optical Flow from Geometric Matching Consistent Perspective [38.014569953980754]
We propose a rethinking to previous optical flow estimation.
We use GIM as a pre-training task for the optical flow estimation (MatchFlow) with better feature representations.
Our method achieves 11.5% and 10.1% error reduction from GMA on Sintel clean pass and KITTI test set.
arXiv Detail & Related papers (2023-03-15T06:00:38Z) - BlinkFlow: A Dataset to Push the Limits of Event-based Optical Flow Estimation [76.66876888943385]
Event cameras provide high temporal precision, low data rates, and high dynamic range visual perception.
We present a novel simulator, BlinkSim, for the fast generation of large-scale data for event-based optical flow.
arXiv Detail & Related papers (2023-03-14T09:03:54Z) - SCFlow: Optical Flow Estimation for Spiking Camera [50.770803466875364]
Spiking camera has enormous potential in real applications, especially for motion estimation in high-speed scenes.
Optical flow estimation has achieved remarkable success in image-based and event-based vision, but % existing methods cannot be directly applied in spike stream from spiking camera.
This paper presents, SCFlow, a novel deep learning pipeline for optical flow estimation for spiking camera.
arXiv Detail & Related papers (2021-10-08T06:16:45Z) - AutoFlow: Learning a Better Training Set for Optical Flow [62.40293188964933]
AutoFlow is a method to render training data for optical flow.
AutoFlow achieves state-of-the-art accuracy in pre-training both PWC-Net and RAFT.
arXiv Detail & Related papers (2021-04-29T17:55:23Z) - OmniFlow: Human Omnidirectional Optical Flow [0.0]
Our paper presents OmniFlow: a new synthetic omnidirectional human optical flow dataset.
Based on a rendering engine we create a naturalistic 3D indoor environment with textured rooms, characters, actions, objects, illumination and motion blur.
The simulation has as output rendered images of household activities and the corresponding forward and backward optical flow.
arXiv Detail & Related papers (2021-04-16T08:25:20Z) - Learning optical flow from still images [53.295332513139925]
We introduce a framework to generate accurate ground-truth optical flow annotations quickly and in large amounts from any readily available single real picture.
We virtually move the camera in the reconstructed environment with known motion vectors and rotation angles.
When trained with our data, state-of-the-art optical flow networks achieve superior generalization to unseen real data.
arXiv Detail & Related papers (2021-04-08T17:59:58Z) - DeFlow: Learning Complex Image Degradations from Unpaired Data with
Conditional Flows [145.83812019515818]
We propose DeFlow, a method for learning image degradations from unpaired data.
We model the degradation process in the latent space of a shared flow-decoder network.
We validate our DeFlow formulation on the task of joint image restoration and super-resolution.
arXiv Detail & Related papers (2021-01-14T18:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.