Orthogonal Features Based EEG Signals Denoising Using Fractional and
Compressed One-Dimensional CNN AutoEncoder
- URL: http://arxiv.org/abs/2104.08120v1
- Date: Fri, 16 Apr 2021 13:58:05 GMT
- Title: Orthogonal Features Based EEG Signals Denoising Using Fractional and
Compressed One-Dimensional CNN AutoEncoder
- Authors: Subham Nagar and Ahlad Kumar
- Abstract summary: This paper presents a fractional one-dimensional convolutional neural network (CNN) autoencoder for denoising the Electroencephalogram (EEG) signals.
EEG signals often get contaminated with noise during the recording process, mostly due to muscle artifacts (MA)
- Score: 3.8580784887142774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a fractional one-dimensional convolutional neural network
(CNN) autoencoder for denoising the Electroencephalogram (EEG) signals which
often get contaminated with noise during the recording process, mostly due to
muscle artifacts (MA), introduced by the movement of muscles. The existing EEG
denoising methods make use of decomposition, thresholding and filtering
techniques. In the proposed approach, EEG signals are first transformed to
orthogonal domain using Tchebichef moments before feeding to the proposed
architecture. A new hyper-parameter ($\alpha$) is introduced which refers to
the fractional order with respect to which gradients are calculated during
back-propagation. It is observed that by tuning $\alpha$, the quality of the
restored signal improves significantly. Motivated by the high usage of portable
low energy devices which make use of compressed deep learning architectures,
the trainable parameters of the proposed architecture are compressed using
randomized singular value decomposition (RSVD) algorithm. The experiments are
performed on the standard EEG datasets, namely, Mendeley and Bonn. The study
shows that the proposed fractional and compressed architecture performs better
than existing state-of-the-art signal denoising methods.
Related papers
- DTP-Net: Learning to Reconstruct EEG signals in Time-Frequency Domain by
Multi-scale Feature Reuse [7.646218090238708]
We present a fully convolutional neural architecture, called DTP-Net, which consists of a Densely Connected Temporal Pyramid (DTP) sandwiched between a pair of learnable time-frequency transformations.
EEG signals are easily corrupted by various artifacts, making artifact removal crucial for improving signal quality in scenarios such as disease diagnosis and brain-computer interface (BCI)
Extensive experiments conducted on two public semi-simulated datasets demonstrate the effective artifact removal performance of DTP-Net.
arXiv Detail & Related papers (2023-11-27T11:09:39Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Modality-Agnostic Variational Compression of Implicit Neural
Representations [96.35492043867104]
We introduce a modality-agnostic neural compression algorithm based on a functional view of data and parameterised as an Implicit Neural Representation (INR)
Bridging the gap between latent coding and sparsity, we obtain compact latent representations non-linearly mapped to a soft gating mechanism.
After obtaining a dataset of such latent representations, we directly optimise the rate/distortion trade-off in a modality-agnostic space using neural compression.
arXiv Detail & Related papers (2023-01-23T15:22:42Z) - ECG Artifact Removal from Single-Channel Surface EMG Using Fully
Convolutional Networks [9.468136300919062]
This study proposed a novel denoising method to eliminate ECG artifacts from the single-channel sEMG signals using fully convolutional networks (FCN)
The proposed method adopts a denoise autoencoder structure and powerful nonlinear mapping capability of neural networks for sEMG denoising.
arXiv Detail & Related papers (2022-10-24T14:12:11Z) - Multi-stage image denoising with the wavelet transform [125.2251438120701]
Deep convolutional neural networks (CNNs) are used for image denoising via automatically mining accurate structure information.
We propose a multi-stage image denoising CNN with the wavelet transform (MWDCNN) via three stages, i.e., a dynamic convolutional block (DCB), two cascaded wavelet transform and enhancement blocks (WEBs) and residual block (RB)
arXiv Detail & Related papers (2022-09-26T03:28:23Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
We propose a swin-conv block to incorporate the local modeling ability of residual convolutional layer and non-local modeling ability of swin transformer block.
For the training data synthesis, we design a practical noise degradation model which takes into consideration different kinds of noise.
Experiments on AGWN removal and real image denoising demonstrate that the new network architecture design achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-03-24T18:11:31Z) - EEGDnet: Fusing Non-Local and Local Self-Similarity for 1-D EEG Signal
Denoising with 2-D Transformer [8.295946712221845]
We propose a novel 1-D EEG signal denoising network with 2-D transformer, EEGDnet.
We take into account the non-local and local self-similarity of EEG signal through the transformer module.
EEGDnet achieves much better performance in terms of both quantitative and qualitative metrics.
arXiv Detail & Related papers (2021-09-09T12:55:19Z) - Graph Signal Restoration Using Nested Deep Algorithm Unrolling [85.53158261016331]
Graph signal processing is a ubiquitous task in many applications such as sensor, social transportation brain networks, point cloud processing, and graph networks.
We propose two restoration methods based on convexindependent deep ADMM (ADMM)
parameters in the proposed restoration methods are trainable in an end-to-end manner.
arXiv Detail & Related papers (2021-06-30T08:57:01Z) - Learning Frequency Domain Approximation for Binary Neural Networks [68.79904499480025]
We propose to estimate the gradient of sign function in the Fourier frequency domain using the combination of sine functions for training BNNs.
The experiments on several benchmark datasets and neural architectures illustrate that the binary network learned using our method achieves the state-of-the-art accuracy.
arXiv Detail & Related papers (2021-03-01T08:25:26Z) - Orthogonal Features-based EEG Signal Denoising using Fractionally
Compressed AutoEncoder [16.889633963766858]
A fractional-based compressed auto-encoder architecture has been introduced to solve the problem of denoising electroencephalogram (EEG) signals.
The proposed architecture provides improved denoising results on the standard datasets when compared with the existing methods.
arXiv Detail & Related papers (2021-02-16T11:15:00Z) - ScalingNet: extracting features from raw EEG data for emotion
recognition [4.047737925426405]
We propose a novel convolutional layer allowing to adaptively extract effective data-driven spectrogram-like features from raw EEG signals.
The proposed neural network architecture based on the scaling layer, references as ScalingNet, has achieved the state-of-the-art result across the established DEAP benchmark dataset.
arXiv Detail & Related papers (2021-02-07T08:54:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.