Modality-Agnostic Variational Compression of Implicit Neural
Representations
- URL: http://arxiv.org/abs/2301.09479v3
- Date: Fri, 7 Apr 2023 11:29:26 GMT
- Title: Modality-Agnostic Variational Compression of Implicit Neural
Representations
- Authors: Jonathan Richard Schwarz and Jihoon Tack and Yee Whye Teh and Jaeho
Lee and Jinwoo Shin
- Abstract summary: We introduce a modality-agnostic neural compression algorithm based on a functional view of data and parameterised as an Implicit Neural Representation (INR)
Bridging the gap between latent coding and sparsity, we obtain compact latent representations non-linearly mapped to a soft gating mechanism.
After obtaining a dataset of such latent representations, we directly optimise the rate/distortion trade-off in a modality-agnostic space using neural compression.
- Score: 96.35492043867104
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a modality-agnostic neural compression algorithm based on a
functional view of data and parameterised as an Implicit Neural Representation
(INR). Bridging the gap between latent coding and sparsity, we obtain compact
latent representations non-linearly mapped to a soft gating mechanism. This
allows the specialisation of a shared INR network to each data item through
subnetwork selection. After obtaining a dataset of such latent representations,
we directly optimise the rate/distortion trade-off in a modality-agnostic space
using neural compression. Variational Compression of Implicit Neural
Representations (VC-INR) shows improved performance given the same
representational capacity pre quantisation while also outperforming previous
quantisation schemes used for other INR techniques. Our experiments demonstrate
strong results over a large set of diverse modalities using the same algorithm
without any modality-specific inductive biases. We show results on images,
climate data, 3D shapes and scenes as well as audio and video, introducing
VC-INR as the first INR-based method to outperform codecs as well-known and
diverse as JPEG 2000, MP3 and AVC/HEVC on their respective modalities.
Related papers
- Releasing the Parameter Latency of Neural Representation for High-Efficiency Video Compression [18.769136361963472]
implicit neural representation (INR) technique models entire videos as basic units, automatically capturing intra-frame and inter-frame correlations.
In this paper, we show that our method significantly enhances the rate-distortion performance of INR video compression.
arXiv Detail & Related papers (2024-10-02T15:19:31Z) - NVRC: Neural Video Representation Compression [13.131842990481038]
We propose a novel INR-based video compression framework, Neural Video Representation Compression (NVRC)
NVRC, for the first time, is able to optimize an INR-based video in a fully end-to-end manner.
Our experiments show that NVRC outperforms many conventional and learning-based benchmark entropy.
arXiv Detail & Related papers (2024-09-11T16:57:12Z) - NERV++: An Enhanced Implicit Neural Video Representation [11.25130799452367]
We introduce neural representations for videos NeRV++, an enhanced implicit neural video representation.
NeRV++ is more straightforward yet effective enhancement over the original NeRV decoder architecture.
We evaluate our method on UVG, MCL JVC, and Bunny datasets, achieving competitive results for video compression with INRs.
arXiv Detail & Related papers (2024-02-28T13:00:32Z) - Versatile Neural Processes for Learning Implicit Neural Representations [57.090658265140384]
We propose Versatile Neural Processes (VNP), which largely increases the capability of approximating functions.
Specifically, we introduce a bottleneck encoder that produces fewer and informative context tokens, relieving the high computational cost.
We demonstrate the effectiveness of the proposed VNP on a variety of tasks involving 1D, 2D and 3D signals.
arXiv Detail & Related papers (2023-01-21T04:08:46Z) - Signal Processing for Implicit Neural Representations [80.38097216996164]
Implicit Neural Representations (INRs) encode continuous multi-media data via multi-layer perceptrons.
Existing works manipulate such continuous representations via processing on their discretized instance.
We propose an implicit neural signal processing network, dubbed INSP-Net, via differential operators on INR.
arXiv Detail & Related papers (2022-10-17T06:29:07Z) - Scalable Neural Video Representations with Learnable Positional Features [73.51591757726493]
We show how to train neural representations with learnable positional features (NVP) that effectively amortize a video as latent codes.
We demonstrate the superiority of NVP on the popular UVG benchmark; compared with prior arts, NVP not only trains 2 times faster (less than 5 minutes) but also exceeds their encoding quality as 34.07rightarrow$34.57 (measured with the PSNR metric)
arXiv Detail & Related papers (2022-10-13T08:15:08Z) - Sobolev Training for Implicit Neural Representations with Approximated
Image Derivatives [12.71676484494428]
Implicit Neural Representations (INRs) parameterized by neural networks have emerged as a powerful tool to represent different kinds of signals.
We propose a training paradigm for INRs whose target output is image pixels, to encode image derivatives in addition to image values in the neural network.
We show how the training paradigm can be leveraged to solve typical INRs problems, i.e., image regression and inverse rendering.
arXiv Detail & Related papers (2022-07-21T10:12:41Z) - Neural Data-Dependent Transform for Learned Image Compression [72.86505042102155]
We build a neural data-dependent transform and introduce a continuous online mode decision mechanism to jointly optimize the coding efficiency for each individual image.
The experimental results show the effectiveness of the proposed neural-syntax design and the continuous online mode decision mechanism.
arXiv Detail & Related papers (2022-03-09T14:56:48Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - Generalized Octave Convolutions for Learned Multi-Frequency Image
Compression [20.504561050200365]
We propose the first learned multi-frequency image compression and entropy coding approach.
It is based on the recently developed octave convolutions to factorize the latents into high and low frequency (resolution) components.
We show that the proposed generalized octave convolution can improve the performance of other auto-encoder-based computer vision tasks.
arXiv Detail & Related papers (2020-02-24T01:35:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.