Uncertainty Surrogates for Deep Learning
- URL: http://arxiv.org/abs/2104.08147v1
- Date: Fri, 16 Apr 2021 14:50:28 GMT
- Title: Uncertainty Surrogates for Deep Learning
- Authors: Radhakrishna Achanta, Natasa Tagasovska
- Abstract summary: We introduce a novel way of estimating prediction uncertainty in deep networks through the use of uncertainty surrogates.
These surrogates are features of the penultimate layer of a deep network that are forced to match predefined patterns.
We show how our approach can be used for estimating uncertainty in prediction and out-of-distribution detection.
- Score: 17.868995105624023
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we introduce a novel way of estimating prediction uncertainty
in deep networks through the use of uncertainty surrogates. These surrogates
are features of the penultimate layer of a deep network that are forced to
match predefined patterns. The patterns themselves can be, among other
possibilities, a known visual symbol. We show how our approach can be used for
estimating uncertainty in prediction and out-of-distribution detection.
Additionally, the surrogates allow for interpretability of the ability of the
deep network to learn and at the same time lend robustness against adversarial
attacks. Despite its simplicity, our approach is superior to the
state-of-the-art approaches on standard metrics as well as computational
efficiency and ease of implementation. A wide range of experiments are
performed on standard datasets to prove the efficacy of our approach.
Related papers
- Boosting Adversarial Robustness using Feature Level Stochastic Smoothing [46.86097477465267]
adversarial defenses have led to a significant improvement in the robustness of Deep Neural Networks.
In this work, we propose a generic method for introducingity in the network predictions.
We also utilize this for smoothing decision rejecting low confidence predictions.
arXiv Detail & Related papers (2023-06-10T15:11:24Z) - Uncertainty Quantification in Deep Neural Networks through Statistical
Inference on Latent Space [0.0]
We develop an algorithm that exploits the latent-space representation of data points fed into the network to assess the accuracy of their prediction.
We show on a synthetic dataset that commonly used methods are mostly overconfident.
In contrast, our method can detect such out-of-distribution data points as inaccurately predicted, thus aiding in the automatic detection of outliers.
arXiv Detail & Related papers (2023-05-18T09:52:06Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - ZigZag: Universal Sampling-free Uncertainty Estimation Through Two-Step Inference [54.17205151960878]
We introduce a sampling-free approach that is generic and easy to deploy.
We produce reliable uncertainty estimates on par with state-of-the-art methods at a significantly lower computational cost.
arXiv Detail & Related papers (2022-11-21T13:23:09Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - Robust Deep Learning for Autonomous Driving [0.0]
We introduce a new criterion to reliably estimate model confidence: the true class probability ( TCP)
Since the true class is by essence unknown at test time, we propose to learn TCP criterion from data with an auxiliary model, introducing a specific learning scheme adapted to this context.
We tackle the challenge of jointly detecting misclassification and out-of-distributions samples by introducing a new uncertainty measure based on evidential models and defined on the simplex.
arXiv Detail & Related papers (2022-11-14T22:07:11Z) - Training Uncertainty-Aware Classifiers with Conformalized Deep Learning [7.837881800517111]
Deep neural networks are powerful tools to detect hidden patterns in data and leverage them to make predictions, but they are not designed to understand uncertainty.
We develop a novel training algorithm that can lead to more dependable uncertainty estimates, without sacrificing predictive power.
arXiv Detail & Related papers (2022-05-12T05:08:10Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
A major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks.
This study presents the concept of residual error, a new performance measure for assessing the adversarial robustness of a deep neural network.
Experimental results using the case of image classification demonstrate the effectiveness and efficacy of the proposed residual error metric.
arXiv Detail & Related papers (2021-06-18T16:34:23Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
We show how uncertainty estimation can be leveraged to enable safety critical image segmentation in autonomous driving.
We introduce a new uncertainty measure based on disagreeing predictions as measured by a dissimilarity function.
We show experimentally that our proposed approach is much less computationally intensive at inference time than competing methods.
arXiv Detail & Related papers (2021-05-28T09:23:05Z) - Depth Uncertainty in Neural Networks [2.6763498831034043]
Existing methods for estimating uncertainty in deep learning tend to require multiple forward passes.
By exploiting the sequential structure of feed-forward networks, we are able to both evaluate our training objective and make predictions with a single forward pass.
We validate our approach on real-world regression and image classification tasks.
arXiv Detail & Related papers (2020-06-15T14:33:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.