Uncertainty Quantification in Deep Neural Networks through Statistical
Inference on Latent Space
- URL: http://arxiv.org/abs/2305.10840v1
- Date: Thu, 18 May 2023 09:52:06 GMT
- Title: Uncertainty Quantification in Deep Neural Networks through Statistical
Inference on Latent Space
- Authors: Luigi Sbail\`o and Luca M. Ghiringhelli
- Abstract summary: We develop an algorithm that exploits the latent-space representation of data points fed into the network to assess the accuracy of their prediction.
We show on a synthetic dataset that commonly used methods are mostly overconfident.
In contrast, our method can detect such out-of-distribution data points as inaccurately predicted, thus aiding in the automatic detection of outliers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncertainty-quantification methods are applied to estimate the confidence of
deep-neural-networks classifiers over their predictions. However, most widely
used methods are known to be overconfident. We address this problem by
developing an algorithm that exploits the latent-space representation of data
points fed into the network, to assess the accuracy of their prediction. Using
the latent-space representation generated by the fraction of training set that
the network classifies correctly, we build a statistical model that is able to
capture the likelihood of a given prediction. We show on a synthetic dataset
that commonly used methods are mostly overconfident. Overconfidence occurs also
for predictions made on data points that are outside the distribution that
generated the training data. In contrast, our method can detect such
out-of-distribution data points as inaccurately predicted, thus aiding in the
automatic detection of outliers.
Related papers
- Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
A popular approach for estimating the predictive uncertainty of neural networks is to define a prior distribution over the network parameters.
We propose a scalable function-space variational inference method that allows incorporating prior information.
We show that the proposed method leads to state-of-the-art uncertainty estimation and predictive performance on a range of prediction tasks.
arXiv Detail & Related papers (2023-12-28T18:33:26Z) - Confidence estimation of classification based on the distribution of the
neural network output layer [4.529188601556233]
One of the most common problems preventing the application of prediction models in the real world is lack of generalization.
We propose novel methods that estimate uncertainty of particular predictions generated by a neural network classification model.
The proposed methods infer the confidence of a particular prediction based on the distribution of the logit values corresponding to this prediction.
arXiv Detail & Related papers (2022-10-14T12:32:50Z) - Training Uncertainty-Aware Classifiers with Conformalized Deep Learning [7.837881800517111]
Deep neural networks are powerful tools to detect hidden patterns in data and leverage them to make predictions, but they are not designed to understand uncertainty.
We develop a novel training algorithm that can lead to more dependable uncertainty estimates, without sacrificing predictive power.
arXiv Detail & Related papers (2022-05-12T05:08:10Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Uncertainty Estimation and Sample Selection for Crowd Counting [87.29137075538213]
We present a method for image-based crowd counting that can predict a crowd density map together with the uncertainty values pertaining to the predicted density map.
A key advantage of our method over existing crowd counting methods is its ability to quantify the uncertainty of its predictions.
We show that our sample selection strategy drastically reduces the amount of labeled data needed to adapt a counting network trained on a source domain to the target domain.
arXiv Detail & Related papers (2020-09-30T03:40:07Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Uncertainty-Aware Deep Classifiers using Generative Models [7.486679152591502]
Deep neural networks are often ignorant about what they do not know and overconfident when they make uninformed predictions.
Some recent approaches quantify uncertainty directly by training the model to output high uncertainty for the data samples close to class boundaries or from the outside of the training distribution.
We develop a novel neural network model that is able to express both aleatoric and epistemic uncertainty to distinguish decision boundary and out-of-distribution regions.
arXiv Detail & Related papers (2020-06-07T15:38:35Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.