A Study of Graph-Based Approaches for Semi-Supervised Time Series
Classification
- URL: http://arxiv.org/abs/2104.08153v1
- Date: Fri, 16 Apr 2021 14:57:41 GMT
- Title: A Study of Graph-Based Approaches for Semi-Supervised Time Series
Classification
- Authors: Dominik Alfke, Miriam Gondos, Lucile Peroche, Martin Stoll
- Abstract summary: Two main aspects are involved in this task: A suitable distance measure to evaluate the similarities between time series, and a learning method to make predictions based on these distances.
We describe four different distance measures, including (Soft) DTW and Matrix Profile, as well as four successful semi-supervised learning methods, including the graph Allen- Cahn method and a Graph Convolutional Neural Network.
Our findings show that all measures and methods vary strongly in accuracy between data sets and that there is no clear best combination to employ in all cases.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series data play an important role in many applications and their
analysis reveals crucial information for understanding the underlying
processes. Among the many time series learning tasks of great importance, we
here focus on semi-supervised learning which benefits of a graph representation
of the data. Two main aspects are involved in this task: A suitable distance
measure to evaluate the similarities between time series, and a learning method
to make predictions based on these distances. However, the relationship between
the two aspects has never been studied systematically. We describe four
different distance measures, including (Soft) DTW and Matrix Profile, as well
as four successful semi-supervised learning methods, including the graph Allen-
Cahn method and a Graph Convolutional Neural Network. We then compare the
performance of the algorithms on standard data sets. Our findings show that all
measures and methods vary strongly in accuracy between data sets and that there
is no clear best combination to employ in all cases.
Related papers
- Few-Shot Learning on Graphs: from Meta-learning to Pre-training and
Prompting [56.25730255038747]
This survey endeavors to synthesize recent developments, provide comparative insights, and identify future directions.
We systematically categorize existing studies into three major families: meta-learning approaches, pre-training approaches, and hybrid approaches.
We analyze the relationships among these methods and compare their strengths and limitations.
arXiv Detail & Related papers (2024-02-02T14:32:42Z) - A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and
Future Directions [64.84521350148513]
Graphs represent interconnected structures prevalent in a myriad of real-world scenarios.
Effective graph analytics, such as graph learning methods, enables users to gain profound insights from graph data.
However, these methods often suffer from data imbalance, a common issue in graph data where certain segments possess abundant data while others are scarce.
This necessitates the emerging field of imbalanced learning on graphs, which aims to correct these data distribution skews for more accurate and representative learning outcomes.
arXiv Detail & Related papers (2023-08-26T09:11:44Z) - A Topological Approach for Semi-Supervised Learning [0.0]
We present new semi-supervised learning methods based on techniques from Topological Data Analysis (TDA)
In particular, we have created two semi-supervised learning methods following two different topological approaches.
The results show that the methods developed in this work outperform both the results obtained with models trained with only manually labelled data, and those obtained with classical semi-supervised learning methods.
arXiv Detail & Related papers (2022-05-19T15:23:39Z) - Self-Attention Neural Bag-of-Features [103.70855797025689]
We build on the recently introduced 2D-Attention and reformulate the attention learning methodology.
We propose a joint feature-temporal attention mechanism that learns a joint 2D attention mask highlighting relevant information.
arXiv Detail & Related papers (2022-01-26T17:54:14Z) - A Comprehensive Analytical Survey on Unsupervised and Semi-Supervised
Graph Representation Learning Methods [4.486285347896372]
This survey aims to evaluate all major classes of graph embedding methods.
We organized graph embedding techniques using a taxonomy that includes methods from manual feature engineering, matrix factorization, shallow neural networks, and deep graph convolutional networks.
We designed experiments on top of PyTorch Geometric and DGL libraries and run experiments on different multicore CPU and GPU platforms.
arXiv Detail & Related papers (2021-12-20T07:50:26Z) - Learnable Graph Matching: Incorporating Graph Partitioning with Deep
Feature Learning for Multiple Object Tracking [58.30147362745852]
Data association across frames is at the core of Multiple Object Tracking (MOT) task.
Existing methods mostly ignore the context information among tracklets and intra-frame detections.
We propose a novel learnable graph matching method to address these issues.
arXiv Detail & Related papers (2021-03-30T08:58:45Z) - Benchmarking Deep Learning Interpretability in Time Series Predictions [41.13847656750174]
Saliency methods are used extensively to highlight the importance of input features in model predictions.
We set out to extensively compare the performance of various saliency-based interpretability methods across diverse neural architectures.
arXiv Detail & Related papers (2020-10-26T22:07:53Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
We consider a problem known as multi-task learning, consisting of fitting a set of regression functions intended for solving different tasks.
In our novel formulation, we couple the parameters of these functions, so that they learn in their task specific domains while staying close to each other.
This facilitates cross-fertilization in which data collected across different domains help improving the learning performance at each other task.
arXiv Detail & Related papers (2020-10-24T21:35:57Z) - Learning an Interpretable Graph Structure in Multi-Task Learning [18.293397644865454]
We present a novel methodology to jointly perform multi-task learning and infer intrinsic relationship among tasks by an interpretable and sparse graph.
Our graph is learned simultaneously with model parameters of each task, thus it reflects the critical relationship among tasks in the specific prediction problem.
arXiv Detail & Related papers (2020-09-11T18:58:14Z) - Systematic Ensemble Model Selection Approach for Educational Data Mining [8.26773636337474]
This work explores and analyzing two different datasets at two separate stages of course delivery.
It proposes a systematic approach based on Gini index and p-value to select a suitable ensemble learner from a combination of six potential machine learning algorithms.
Experimental results show that the proposed ensemble models achieve high accuracy and low false positive rate at all stages for both datasets.
arXiv Detail & Related papers (2020-05-13T22:25:58Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
Multi-task learning (MTL) techniques have shown promising results w.r.t. performance, computations and/or memory footprint.
We provide a well-rounded view on state-of-the-art deep learning approaches for MTL in computer vision.
arXiv Detail & Related papers (2020-04-28T09:15:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.