A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and
Future Directions
- URL: http://arxiv.org/abs/2308.13821v2
- Date: Tue, 29 Aug 2023 09:31:11 GMT
- Title: A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and
Future Directions
- Authors: Zemin Liu, Yuan Li, Nan Chen, Qian Wang, Bryan Hooi, Bingsheng He
- Abstract summary: Graphs represent interconnected structures prevalent in a myriad of real-world scenarios.
Effective graph analytics, such as graph learning methods, enables users to gain profound insights from graph data.
However, these methods often suffer from data imbalance, a common issue in graph data where certain segments possess abundant data while others are scarce.
This necessitates the emerging field of imbalanced learning on graphs, which aims to correct these data distribution skews for more accurate and representative learning outcomes.
- Score: 64.84521350148513
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graphs represent interconnected structures prevalent in a myriad of
real-world scenarios. Effective graph analytics, such as graph learning
methods, enables users to gain profound insights from graph data, underpinning
various tasks including node classification and link prediction. However, these
methods often suffer from data imbalance, a common issue in graph data where
certain segments possess abundant data while others are scarce, thereby leading
to biased learning outcomes. This necessitates the emerging field of imbalanced
learning on graphs, which aims to correct these data distribution skews for
more accurate and representative learning outcomes. In this survey, we embark
on a comprehensive review of the literature on imbalanced learning on graphs.
We begin by providing a definitive understanding of the concept and related
terminologies, establishing a strong foundational understanding for readers.
Following this, we propose two comprehensive taxonomies: (1) the problem
taxonomy, which describes the forms of imbalance we consider, the associated
tasks, and potential solutions; (2) the technique taxonomy, which details key
strategies for addressing these imbalances, and aids readers in their method
selection process. Finally, we suggest prospective future directions for both
problems and techniques within the sphere of imbalanced learning on graphs,
fostering further innovation in this critical area.
Related papers
- Towards Graph Prompt Learning: A Survey and Beyond [38.55555996765227]
Large-scale "pre-train and prompt learning" paradigms have demonstrated remarkable adaptability.
This survey categorizes over 100 relevant works in this field, summarizing general design principles and the latest applications.
arXiv Detail & Related papers (2024-08-26T06:36:42Z) - Graph Learning under Distribution Shifts: A Comprehensive Survey on
Domain Adaptation, Out-of-distribution, and Continual Learning [53.81365215811222]
We provide a review and summary of the latest approaches, strategies, and insights that address distribution shifts within the context of graph learning.
We categorize existing graph learning methods into several essential scenarios, including graph domain adaptation learning, graph out-of-distribution learning, and graph continual learning.
We discuss the potential applications and future directions for graph learning under distribution shifts with a systematic analysis of the current state in this field.
arXiv Detail & Related papers (2024-02-26T07:52:40Z) - Few-Shot Learning on Graphs: from Meta-learning to Pre-training and
Prompting [56.25730255038747]
This survey endeavors to synthesize recent developments, provide comparative insights, and identify future directions.
We systematically categorize existing studies into three major families: meta-learning approaches, pre-training approaches, and hybrid approaches.
We analyze the relationships among these methods and compare their strengths and limitations.
arXiv Detail & Related papers (2024-02-02T14:32:42Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - A Survey on Fairness for Machine Learning on Graphs [2.3326951882644553]
This survey is the first one dedicated to fairness for relational data.
It aims to present a comprehensive review of state-of-the-art techniques in fairness on graph mining.
arXiv Detail & Related papers (2022-05-11T10:40:56Z) - Graph Self-supervised Learning with Accurate Discrepancy Learning [64.69095775258164]
We propose a framework that aims to learn the exact discrepancy between the original and the perturbed graphs, coined as Discrepancy-based Self-supervised LeArning (D-SLA)
We validate our method on various graph-related downstream tasks, including molecular property prediction, protein function prediction, and link prediction tasks, on which our model largely outperforms relevant baselines.
arXiv Detail & Related papers (2022-02-07T08:04:59Z) - A Survey of Adversarial Learning on Graphs [59.21341359399431]
We investigate and summarize the existing works on graph adversarial learning tasks.
Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks.
We emphasize the importance of related evaluation metrics, investigate and summarize them comprehensively.
arXiv Detail & Related papers (2020-03-10T12:48:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.