Intense optical parametric amplification in dispersion engineered
nanophotonic lithium niobate waveguides
- URL: http://arxiv.org/abs/2104.08262v3
- Date: Tue, 15 Mar 2022 16:33:39 GMT
- Title: Intense optical parametric amplification in dispersion engineered
nanophotonic lithium niobate waveguides
- Authors: Luis Ledezma, Ryoto Sekine, Qiushi Guo, Rajveer Nehra, Saman Jahani
and Alireza Marandi
- Abstract summary: We combine quasi-phase matching with dispersion engineering in nanophotonic lithium niobate waveguides.
We measure a broadband phase-sensitive on-chip amplification larger than 45 dB/cm in a 2.5-mm-long waveguide.
Our results unlock new possibilities for on-chip few-cycle nonlinear optics, mid-infrared photonics, and quantum photonics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Strong amplification in integrated photonics is one of the most desired
optical functionalities for computing, communications, sensing, and quantum
information processing. Semiconductor gain and cubic nonlinearities, such as
four-wave mixing and stimulated Raman and Brillouin scattering, have been among
the most studied amplification mechanisms on chip. Alternatively, material
platforms with strong quadratic nonlinearities promise numerous advantages with
respect to gain and bandwidth, among which nanophotonic lithium niobate is one
of the most promising candidates. Here, we combine quasi-phase matching with
dispersion engineering in nanophotonic lithium niobate waveguides and achieve
intense optical parametric amplification. We measure a broadband
phase-sensitive on-chip amplification larger than 45 dB/cm in a 2.5-mm-long
waveguide. We further confirm high gain operation in the degenerate and
non-degenerate regimes by amplifying vacuum fluctuations to macroscopic levels
in a 6-mm-long waveguide, with on-chip gains exceeding 100 dB/cm over 600 nm of
bandwidth around 2 $\mu$m. Our results unlock new possibilities for on-chip
few-cycle nonlinear optics, mid-infrared photonics, and quantum photonics.
Related papers
- Scalable microwave-to-optical transducers at single photon level with spins [4.142140287566351]
Microwave-to-optical transduction of single photons will play an essential role in interconnecting future superconducting quantum devices.
We implement an on-chip microwave-to-optical transducer using rare-earth ion (REI) doped crystals.
We demonstrate the interference of photons originating from two simultaneously operated transducers, enabled by the inherent absolute frequencies of the atomic transitions.
arXiv Detail & Related papers (2024-07-11T21:43:02Z) - Wafer-Scale Fabrication of InGaP-on-Insulator for Nonlinear and Quantum Photonic Applications [0.0]
InGaP-on-insulator is optimized for visible-to-telecommunication wavelength $chileft (2right)$ nonlinear optical processes.
We demonstrate intrinsic resonator quality factors as high as 324,000 (440,000) for single-resonance modes near 1550 nm.
These results open promising possibilities for entangled-photon, multi-photon, and squeezed light generation.
arXiv Detail & Related papers (2024-06-26T23:15:36Z) - Efficient generation of broadband photon pairs in shallow-etched lithium niobate nanowaveguide [0.0]
shallow-etched periodically poled lithium niobate waveguide to realize broadband spontaneous down-conversion(SPDC) on nanophotonic chip.
We demonstrate photon-pair generation with a high brightness of 11.7GHz/mW and bandwidth of 22THz, in a 5.7-mm-long PPLN waveguide.
arXiv Detail & Related papers (2024-06-25T10:21:55Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Picosecond Pulsed Squeezing in Thin-Film Lithium Niobate Strip-Loaded
Waveguides at Telecommunication Wavelengths [52.77024349608834]
We show quadrature squeezing of picosecond pulses in a thin-film lithium niobate strip-loaded waveguide.
This work highlights the potential of the strip-loaded waveguide platform for broadband squeezing applications.
arXiv Detail & Related papers (2022-04-12T10:42:19Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Erbium dopants in silicon nanophotonic waveguides [0.0]
We present resonant spectroscopy of implanted erbium dopants in nanophotonic waveguides.
We observe erbium incorporation at well-defined lattice sites with a thousandfold reduced inhomogeneous broadening of about 1 GHz.
Our study thus introduces a novel materials platform for the implementation of on-chip quantum memories, microwave-to-optical conversion, and distributed quantum information processing.
arXiv Detail & Related papers (2020-05-04T18:13:46Z) - Integrating two-photon nonlinear spectroscopy of rubidium atoms with
silicon photonics [0.0]
integrated silicon photonic chip, composed of several sub-wavelength ridge waveguides, immersed in a micro-cell with rubidium vapor.
We observe that the waveguide transmission spectrum gets modified when the photonic mode is coupled to rubidium atoms through its evanescent tail.
This work paves the way towards a miniaturized, low-power, and integrated hybrid atomic-photonic system compatible with CMOS technologies.
arXiv Detail & Related papers (2020-03-10T14:13:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.