Wafer-Scale Fabrication of InGaP-on-Insulator for Nonlinear and Quantum Photonic Applications
- URL: http://arxiv.org/abs/2406.18788v1
- Date: Wed, 26 Jun 2024 23:15:36 GMT
- Title: Wafer-Scale Fabrication of InGaP-on-Insulator for Nonlinear and Quantum Photonic Applications
- Authors: Lillian Thiel, Joshua E. Castro, Trevor J. Steiner, Catherine L. Nguyen, Audrey Pechilis, Liao Duan, Nicholas Lewis, Garrett D. Cole, John E. Bowers, Galan Moody,
- Abstract summary: InGaP-on-insulator is optimized for visible-to-telecommunication wavelength $chileft (2right)$ nonlinear optical processes.
We demonstrate intrinsic resonator quality factors as high as 324,000 (440,000) for single-resonance modes near 1550 nm.
These results open promising possibilities for entangled-photon, multi-photon, and squeezed light generation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of manufacturable and scalable integrated nonlinear photonic materials is driving key technologies in diverse areas such as high-speed communications, signal processing, sensing, and quantum information. Here, we demonstrate a novel nonlinear platform -- InGaP-on-insulator -- optimized for visible-to-telecommunication wavelength $\chi^{\left(2\right)}$ nonlinear optical processes. In this work, we detail our 100-mm wafer-scale InGaP-on-insulator fabrication process realized via wafer bonding, optical lithography, and dry-etching techniques. The resulting wafers yield 1000s of components in each fabrication cycle, with initial designs that include chip-to-fiber couplers, 12.5-cm-long nested spiral waveguides, and arrays of microring resonators with free-spectral ranges spanning 400-900 GHz. We demonstrate intrinsic resonator quality factors as high as 324,000 (440,000) for single-resonance (split-resonance) modes near 1550 nm corresponding to 1.56 dB cm$^{-1}$ (1.22 dB cm$^{-1}$) propagation loss. We analyze the loss versus waveguide width and resonator radius to establish the operating regime for optimal 775-to-1550 nm phase matching. By combining the high $\chi^{\left(2\right)}$ and $\chi^{\left(3\right)}$ optical nonlinearity of InGaP with wafer-scale fabrication and low propagation loss, these results open promising possibilities for entangled-photon, multi-photon, and squeezed light generation.
Related papers
- Integrated Mode-Hop-Free Tunable Lasers at 780 nm for Chip-Scale Classical and Quantum Photonic Applications [1.5150335879032768]
Integrated continuously tunable laser in a heterogeneous gallium arsenide-on-silicon nitride (GaAs-on-SiN) platform.
Laser emits in the far-red radiation spectrum near 780 nm, with 20 nm tuning range, 6 kHz intrinsic linewidth, and a >40 dB side-mode suppression ratio.
The proposed integrated laser holds promise for a broader spectrum of both classical and quantum applications in the visible range.
arXiv Detail & Related papers (2024-07-22T07:33:34Z) - Scalable microwave-to-optical transducers at single photon level with spins [4.142140287566351]
Microwave-to-optical transduction of single photons will play an essential role in interconnecting future superconducting quantum devices.
We implement an on-chip microwave-to-optical transducer using rare-earth ion (REI) doped crystals.
We demonstrate the interference of photons originating from two simultaneously operated transducers, enabled by the inherent absolute frequencies of the atomic transitions.
arXiv Detail & Related papers (2024-07-11T21:43:02Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - On-Demand Generation of Indistinguishable Photons in the Telecom C-Band
using Quantum Dot Devices [31.114245664719455]
We demonstrate the coherent on-demand generation of in photons in the telecom C-band from single QD devices.
The research represents a significant advancement in photon-indistinguishability of single photons emitted directly in the telecom C-band.
arXiv Detail & Related papers (2023-06-14T17:59:03Z) - Photophysics of Intrinsic Single-Photon Emitters in Silicon Nitride at
Low Temperatures [97.5153823429076]
A robust process for fabricating intrinsic single-photon emitters in silicon nitride has been recently established.
These emitters show promise for quantum applications due to room-temperature operation and monolithic integration with the technologically mature silicon nitride photonics platform.
arXiv Detail & Related papers (2023-01-25T19:53:56Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Intense optical parametric amplification in dispersion engineered
nanophotonic lithium niobate waveguides [0.0]
We combine quasi-phase matching with dispersion engineering in nanophotonic lithium niobate waveguides.
We measure a broadband phase-sensitive on-chip amplification larger than 45 dB/cm in a 2.5-mm-long waveguide.
Our results unlock new possibilities for on-chip few-cycle nonlinear optics, mid-infrared photonics, and quantum photonics.
arXiv Detail & Related papers (2021-04-16T17:49:46Z) - Ultra-bright entangled-photon pair generation from an
AlGaAs-on-insulator microring resonator [0.5902314505344212]
Entangled-photon pairs are an essential resource for quantum information technologies.
Here, we demonstrate a novel, ultra-low-loss AlGaAs-on-insulator platform capable of generating time-energy entangled photons.
arXiv Detail & Related papers (2020-09-28T16:45:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.