EXTRACTOR: Extracting Attack Behavior from Threat Reports
- URL: http://arxiv.org/abs/2104.08618v1
- Date: Sat, 17 Apr 2021 18:51:00 GMT
- Title: EXTRACTOR: Extracting Attack Behavior from Threat Reports
- Authors: Kiavash Satvat, Rigel Gjomemo and V.N. Venkatakrishnan
- Abstract summary: We propose a novel approach and tool called provenanceOR that allows precise automatic extraction of concise attack behaviors from CTI reports.
provenanceOR makes no strong assumptions about the text and is capable of extracting attack behaviors as graphs from unstructured text.
Our evaluation results show that provenanceOR can extract concise graphs from CTI reports and can successfully be used by cyber-analytics tools in threat-hunting.
- Score: 6.471387545969443
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The knowledge on attacks contained in Cyber Threat Intelligence (CTI) reports
is very important to effectively identify and quickly respond to cyber threats.
However, this knowledge is often embedded in large amounts of text, and
therefore difficult to use effectively. To address this challenge, we propose a
novel approach and tool called EXTRACTOR that allows precise automatic
extraction of concise attack behaviors from CTI reports. EXTRACTOR makes no
strong assumptions about the text and is capable of extracting attack behaviors
as provenance graphs from unstructured text. We evaluate EXTRACTOR using
real-world incident reports from various sources as well as reports of DARPA
adversarial engagements that involve several attack campaigns on various OS
platforms of Windows, Linux, and FreeBSD. Our evaluation results show that
EXTRACTOR can extract concise provenance graphs from CTI reports and show that
these graphs can successfully be used by cyber-analytics tools in
threat-hunting.
Related papers
- CTINEXUS: Leveraging Optimized LLM In-Context Learning for Constructing Cybersecurity Knowledge Graphs Under Data Scarcity [49.657358248788945]
Textual descriptions in cyber threat intelligence (CTI) reports are rich sources of knowledge about cyber threats.
Current CTI extraction methods lack flexibility and generalizability, often resulting in inaccurate and incomplete knowledge extraction.
We propose CTINexus, a novel framework leveraging optimized in-context learning (ICL) of large language models.
arXiv Detail & Related papers (2024-10-28T14:18:32Z) - AnnoCTR: A Dataset for Detecting and Linking Entities, Tactics, and Techniques in Cyber Threat Reports [3.6785107661544805]
We present AnnoCTR, a new CC-BY-SA-licensed dataset of cyber threat reports.
The reports have been annotated by a domain expert with named entities, temporal expressions, and cybersecurity-specific concepts.
In our few-shot scenario, we find that for identifying the MITRE ATT&CK concepts that are mentioned explicitly or implicitly in a text, concept descriptions from MITRE ATT&CK are an effective source for training data augmentation.
arXiv Detail & Related papers (2024-04-11T14:04:36Z) - TTPXHunter: Actionable Threat Intelligence Extraction as TTPs from Finished Cyber Threat Reports [3.2183320563774833]
Knowing the modus operandi of adversaries aids organizations in employing efficient defensive strategies and sharing intelligence in the community.
A translation tool is needed to interpret the modus operandi explained in the sentences of the threat report and translate it into a structured format.
This research introduces a methodology named TTPXHunter for the automated extraction of threat intelligence in terms of Tactics, Techniques, and Procedures (TTPs) from finished cyber threat reports.
arXiv Detail & Related papers (2024-03-05T19:04:09Z) - CVE-driven Attack Technique Prediction with Semantic Information
Extraction and a Domain-specific Language Model [2.1756081703276]
The paper introduces the TTPpredictor tool, which uses innovative techniques to analyze CVE descriptions and infer plausible TTP attacks resulting from CVE exploitation.
TTPpredictor overcomes challenges posed by limited labeled data and semantic disparities between CVE and TTP descriptions.
The paper presents an empirical assessment, demonstrating TTPpredictor's effectiveness with accuracy rates of approximately 98% and F1-scores ranging from 95% to 98% in precise CVE classification to ATT&CK techniques.
arXiv Detail & Related papers (2023-09-06T06:53:45Z) - On the Security Risks of Knowledge Graph Reasoning [71.64027889145261]
We systematize the security threats to KGR according to the adversary's objectives, knowledge, and attack vectors.
We present ROAR, a new class of attacks that instantiate a variety of such threats.
We explore potential countermeasures against ROAR, including filtering of potentially poisoning knowledge and training with adversarially augmented queries.
arXiv Detail & Related papers (2023-05-03T18:47:42Z) - ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence Gathering and Management [65.0114141380651]
ThreatKG is an automated system for OSCTI gathering and management.
It efficiently collects a large number of OSCTI reports from multiple sources.
It uses specialized AI-based techniques to extract high-quality knowledge about various threat entities.
arXiv Detail & Related papers (2022-12-20T16:13:59Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
We evaluate and compare different Natural Language Processing (NLP) and machine learning techniques used for security information extraction in research.
Based on our investigations we propose a data processing pipeline that automatically classifies unstructured text according to attackers' tactics and techniques.
arXiv Detail & Related papers (2022-07-18T09:59:21Z) - What are the attackers doing now? Automating cyber threat intelligence
extraction from text on pace with the changing threat landscape: A survey [1.1064955465386]
We systematically collect "CTI extraction from text"-related studies from the literature.
We identify the data sources, techniques, and CTI sharing formats utilized in the context of the proposed pipeline.
arXiv Detail & Related papers (2021-09-14T16:38:41Z) - A System for Efficiently Hunting for Cyber Threats in Computer Systems
Using Threat Intelligence [78.23170229258162]
We build ThreatRaptor, a system that facilitates cyber threat hunting in computer systems using OSCTI.
ThreatRaptor provides (1) an unsupervised, light-weight, and accurate NLP pipeline that extracts structured threat behaviors from unstructured OSCTI text, (2) a concise and expressive domain-specific query language, TBQL, to hunt for malicious system activities, and (3) a query synthesis mechanism that automatically synthesizes a TBQL query from the extracted threat behaviors.
arXiv Detail & Related papers (2021-01-17T19:44:09Z) - Enabling Efficient Cyber Threat Hunting With Cyber Threat Intelligence [94.94833077653998]
ThreatRaptor is a system that facilitates threat hunting in computer systems using open-source Cyber Threat Intelligence (OSCTI)
It extracts structured threat behaviors from unstructured OSCTI text and uses a concise and expressive domain-specific query language, TBQL, to hunt for malicious system activities.
Evaluations on a broad set of attack cases demonstrate the accuracy and efficiency of ThreatRaptor in practical threat hunting.
arXiv Detail & Related papers (2020-10-26T14:54:01Z) - Automated Retrieval of ATT&CK Tactics and Techniques for Cyber Threat
Reports [5.789368942487406]
We evaluate several classification approaches to automatically retrieve Tactics, Techniques and Procedures from unstructured text.
We present rcATT, a tool built on top of our findings and freely distributed to the security community to support cyber threat report automated analysis.
arXiv Detail & Related papers (2020-04-29T16:45:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.