論文の概要: Stochastic Optimization of Areas Under Precision-Recall Curves with
Provable Convergence
- arxiv url: http://arxiv.org/abs/2104.08736v5
- Date: Wed, 12 Apr 2023 22:42:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-14 17:43:11.177915
- Title: Stochastic Optimization of Areas Under Precision-Recall Curves with
Provable Convergence
- Title(参考訳): 確率収束を伴う高精度リコール曲線下の領域の確率的最適化
- Authors: Qi Qi, Youzhi Luo, Zhao Xu, Shuiwang Ji, Tianbao Yang
- Abstract要約: ROC(AUROC)と精度リコール曲線(AUPRC)の下の領域は、不均衡問題に対する分類性能を評価するための一般的な指標である。
本稿では,深層学習のためのAUPRCの最適化手法を提案する。
- 参考スコア(独自算出の注目度): 66.83161885378192
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Areas under ROC (AUROC) and precision-recall curves (AUPRC) are common
metrics for evaluating classification performance for imbalanced problems.
Compared with AUROC, AUPRC is a more appropriate metric for highly imbalanced
datasets. While stochastic optimization of AUROC has been studied extensively,
principled stochastic optimization of AUPRC has been rarely explored. In this
work, we propose a principled technical method to optimize AUPRC for deep
learning. Our approach is based on maximizing the averaged precision (AP),
which is an unbiased point estimator of AUPRC. We cast the objective into a sum
of {\it dependent compositional functions} with inner functions dependent on
random variables of the outer level. We propose efficient adaptive and
non-adaptive stochastic algorithms named SOAP with {\it provable convergence
guarantee under mild conditions} by leveraging recent advances in stochastic
compositional optimization. Extensive experimental results on image and graph
datasets demonstrate that our proposed method outperforms prior methods on
imbalanced problems in terms of AUPRC. To the best of our knowledge, our work
represents the first attempt to optimize AUPRC with provable convergence. The
SOAP has been implemented in the libAUC library at~\url{https://libauc.org/}.
- Abstract(参考訳): ROC(AUROC)と精度リコール曲線(AUPRC)の下の領域は、不均衡問題に対する分類性能を評価するための一般的な指標である。
AUROCと比較すると、AUPRCは高度に不均衡なデータセットに対してより適切なメトリックである。
AUROCの確率最適化は広く研究されているが、AUPRCの原理的確率最適化はめったに研究されていない。
本研究では,深層学習のためのAUPRCを最適化する原理的技術手法を提案する。
提案手法は, AUPRCの非バイアス点推定器である平均精度(AP)を最大化することに基づいている。
我々は、その目的を外部レベルのランダム変数に依存する内部関数を持つ、従属合成関数の和にキャストした。
本稿では,近年の確率的構成最適化の進歩を活用し,適応的および非適応的確率論的アルゴリズムであるSOAPを提案する。
画像およびグラフデータセットの広範な実験結果から,提案手法がauprcの観点から不均衡問題に対する先行手法よりも優れていることが分かる。
我々の知る限りでは、我々の研究はauprcを証明可能な収束で最適化する最初の試みである。
soapはlibaucライブラリに~\url{https://libauc.org/}で実装されている。
関連論文リスト
- Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
本稿では,高信頼領域を適応的にフィルタするBALLETというフレームワークを提案する。
理論的には、BALLETは探索空間を効率的に縮小することができ、標準BOよりも厳密な後悔を示すことができる。
論文 参考訳(メタデータ) (2023-07-25T09:45:47Z) - Smoothing Policy Iteration for Zero-sum Markov Games [9.158672246275348]
ゼロサムMGの解法としてスムージングポリシロバストネス(SPI)アルゴリズムを提案する。
特に、対向ポリシーは、作用空間上の効率的なサンプリングを可能にする重み関数として機能する。
また,SPIを関数近似で拡張することにより,Smooth adversarial Actor-critic (SaAC) と呼ばれるモデルベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-03T14:39:06Z) - Maximum-Likelihood Inverse Reinforcement Learning with Finite-Time
Guarantees [56.848265937921354]
逆強化学習(IRL)は報酬関数と関連する最適ポリシーを回復することを目的としている。
IRLの多くのアルゴリズムは本質的にネスト構造を持つ。
我々は、報酬推定精度を損なわないIRLのための新しいシングルループアルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-10-04T17:13:45Z) - Exploring the Algorithm-Dependent Generalization of AUPRC Optimization
with List Stability [107.65337427333064]
AUPRC(Area Under the Precision-Recall Curve)の最適化は、機械学習にとって重要な問題である。
本研究では, AUPRC最適化の単依存一般化における最初の試行について述べる。
3つの画像検索データセットの実験は、我々のフレームワークの有効性と健全性に言及する。
論文 参考訳(メタデータ) (2022-09-27T09:06:37Z) - Large-scale Optimization of Partial AUC in a Range of False Positive
Rates [51.12047280149546]
ROC曲線 (AUC) の下の領域は、機械学習において最も広く使われている分類モデルのパフォーマンス指標の1つである。
近年の封筒平滑化技術に基づく効率的な近似勾配降下法を開発した。
提案アルゴリズムは,効率のよい解法を欠くランク付けされた範囲損失の和を最小化するためにも利用できる。
論文 参考訳(メタデータ) (2022-03-03T03:46:18Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
高精度リコール曲線(AUPRC)に基づく領域の最適化について検討し,不均衡なタスクに広く利用されている。
我々は、$O (1/epsilon4)$のより優れた反復による、$epsilon$定常解を見つけるための新しい運動量法を開発する。
また,O(1/epsilon4)$と同じ複雑さを持つ適応手法の新たなファミリを設計し,実際により高速な収束を享受する。
論文 参考訳(メタデータ) (2021-07-02T16:21:52Z) - From Majorization to Interpolation: Distributionally Robust Learning
using Kernel Smoothing [1.2891210250935146]
確率指標に基づく分布的ロバスト最適化(DRO)の関数近似の側面を検討する。
本稿では,滑らかな関数近似と畳み込みに基づく堅牢な学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-16T22:25:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。