Flexible Operations for Natural Language Deduction
- URL: http://arxiv.org/abs/2104.08825v1
- Date: Sun, 18 Apr 2021 11:36:26 GMT
- Title: Flexible Operations for Natural Language Deduction
- Authors: Kaj Bostrom, Xinyu Zhao, Swarat Chaudhuri, Greg Durrett
- Abstract summary: ParaPattern is a method for building models to generate logical transformations of diverse natural language inputs without direct human supervision.
We use a BART-based model to generate the result of applying a particular logical operation to one or more premise statements.
We evaluate our models using targeted contrast sets as well as out-of-domain sentence compositions from the QASC dataset.
- Score: 32.92866195461153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An interpretable system for complex, open-domain reasoning needs an
interpretable meaning representation. Natural language is an excellent
candidate -- it is both extremely expressive and easy for humans to understand.
However, manipulating natural language statements in logically consistent ways
is hard. Models have to be precise, yet robust enough to handle variation in
how information is expressed. In this paper, we describe ParaPattern, a method
for building models to generate logical transformations of diverse natural
language inputs without direct human supervision. We use a BART-based model
(Lewis et al., 2020) to generate the result of applying a particular logical
operation to one or more premise statements. Crucially, we have a largely
automated pipeline for scraping and constructing suitable training examples
from Wikipedia, which are then paraphrased to give our models the ability to
handle lexical variation. We evaluate our models using targeted contrast sets
as well as out-of-domain sentence compositions from the QASC dataset (Khot et
al., 2020). Our results demonstrate that our operation models are both accurate
and flexible.
Related papers
- QUITE: Quantifying Uncertainty in Natural Language Text in Bayesian Reasoning Scenarios [15.193544498311603]
We present QUITE, a dataset of real-world Bayesian reasoning scenarios with categorical random variables and complex relationships.
We conduct an extensive set of experiments, finding that logic-based models outperform out-of-the-box large language models on all reasoning types.
Our results provide evidence that neuro-symbolic models are a promising direction for improving complex reasoning.
arXiv Detail & Related papers (2024-10-14T12:44:59Z) - Transparency at the Source: Evaluating and Interpreting Language Models
With Access to the True Distribution [4.01799362940916]
We present a setup for training, evaluating and interpreting neural language models, that uses artificial, language-like data.
The data is generated using a massive probabilistic grammar, that is itself derived from a large natural language corpus.
With access to the underlying true source, our results show striking differences and outcomes in learning dynamics between different classes of words.
arXiv Detail & Related papers (2023-10-23T12:03:01Z) - APOLLO: A Simple Approach for Adaptive Pretraining of Language Models
for Logical Reasoning [73.3035118224719]
We propose APOLLO, an adaptively pretrained language model that has improved logical reasoning abilities.
APOLLO performs comparably on ReClor and outperforms baselines on LogiQA.
arXiv Detail & Related papers (2022-12-19T07:40:02Z) - Transparency Helps Reveal When Language Models Learn Meaning [71.96920839263457]
Our systematic experiments with synthetic data reveal that, with languages where all expressions have context-independent denotations, both autoregressive and masked language models learn to emulate semantic relations between expressions.
Turning to natural language, our experiments with a specific phenomenon -- referential opacity -- add to the growing body of evidence that current language models do not well-represent natural language semantics.
arXiv Detail & Related papers (2022-10-14T02:35:19Z) - Interpreting Language Models with Contrastive Explanations [99.7035899290924]
Language models must consider various features to predict a token, such as its part of speech, number, tense, or semantics.
Existing explanation methods conflate evidence for all these features into a single explanation, which is less interpretable for human understanding.
We show that contrastive explanations are quantifiably better than non-contrastive explanations in verifying major grammatical phenomena.
arXiv Detail & Related papers (2022-02-21T18:32:24Z) - Foundations of Symbolic Languages for Model Interpretability [2.3361634876233817]
We study the computational complexity of FOIL queries over two classes of ML models often deemed to be easily interpretable.
We present a prototype implementation of FOIL wrapped in a high-level declarative language.
arXiv Detail & Related papers (2021-10-05T21:56:52Z) - Combining Transformers with Natural Language Explanations [13.167758466408825]
We propose an extension to transformer models that makes use of external memories to store natural language explanations and use them to explain classification outputs.
We conduct an experimental evaluation on two domains, legal text analysis and argument mining, to show that our approach can produce relevant explanations while retaining or even improving classification performance.
arXiv Detail & Related papers (2021-09-02T09:17:04Z) - Constrained Language Models Yield Few-Shot Semantic Parsers [73.50960967598654]
We explore the use of large pretrained language models as few-shot semantics.
The goal in semantic parsing is to generate a structured meaning representation given a natural language input.
We use language models to paraphrase inputs into a controlled sublanguage resembling English that can be automatically mapped to a target meaning representation.
arXiv Detail & Related papers (2021-04-18T08:13:06Z) - Unnatural Language Inference [48.45003475966808]
We find that state-of-the-art NLI models, such as RoBERTa and BART, are invariant to, and sometimes even perform better on, examples with randomly reordered words.
Our findings call into question the idea that our natural language understanding models, and the tasks used for measuring their progress, genuinely require a human-like understanding of syntax.
arXiv Detail & Related papers (2020-12-30T20:40:48Z) - Leap-Of-Thought: Teaching Pre-Trained Models to Systematically Reason
Over Implicit Knowledge [96.92252296244233]
Large pre-trained language models (LMs) acquire some reasoning capacity, but this ability is difficult to control.
We show that LMs can be trained to reliably perform systematic reasoning combining both implicit, pre-trained knowledge and explicit natural language statements.
Our work paves a path towards open-domain systems that constantly improve by interacting with users who can instantly correct a model by adding simple natural language statements.
arXiv Detail & Related papers (2020-06-11T17:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.