Functional Protein Structure Annotation Using a Deep Convolutional
Generative Adversarial Network
- URL: http://arxiv.org/abs/2104.08969v1
- Date: Sun, 18 Apr 2021 22:18:52 GMT
- Title: Functional Protein Structure Annotation Using a Deep Convolutional
Generative Adversarial Network
- Authors: Ethan Moyer, Jeff Winchell, Isamu Isozaki, Yigit Alparslan, Mali
Halac, and Edward Kim
- Abstract summary: We introduce the use of a Deep Convolutional Generative Adversarial Network (DCGAN) to classify protein structures based on their functionality.
We train DCGAN on 3-dimensional (3D) decoy and native protein structures in order to generate and discriminate 3D protein structures.
- Score: 4.3871352596331255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying novel functional protein structures is at the heart of molecular
engineering and molecular biology, requiring an often computationally
exhaustive search. We introduce the use of a Deep Convolutional Generative
Adversarial Network (DCGAN) to classify protein structures based on their
functionality by encoding each sample in a grid object structure using three
features in each object: the generic atom type, the position atom type, and its
occupancy relative to a given atom. We train DCGAN on 3-dimensional (3D) decoy
and native protein structures in order to generate and discriminate 3D protein
structures. At the end of our training, loss converges to a local minimum and
our DCGAN can annotate functional proteins robustly against adversarial protein
samples. In the future we hope to extend the novel structures we found from the
generator in our DCGAN with more samples to explore more granular functionality
with varying functions. We hope that our effort will advance the field of
protein structure prediction.
Related papers
- Geometric Self-Supervised Pretraining on 3D Protein Structures using Subgraphs [26.727436310732692]
We propose a novel self-supervised method to pretrain 3D graph neural networks on 3D protein structures.
We experimentally show that our proposed pertaining strategy leads to significant improvements up to 6%.
arXiv Detail & Related papers (2024-06-20T09:34:31Z) - NaNa and MiGu: Semantic Data Augmentation Techniques to Enhance Protein Classification in Graph Neural Networks [60.48306899271866]
We propose novel semantic data augmentation methods to incorporate backbone chemical and side-chain biophysical information into protein classification tasks.
Specifically, we leverage molecular biophysical, secondary structure, chemical bonds, andionic features of proteins to facilitate classification tasks.
arXiv Detail & Related papers (2024-03-21T13:27:57Z) - Functional Geometry Guided Protein Sequence and Backbone Structure
Co-Design [12.585697288315846]
We propose a model to jointly design Protein sequence and structure based on automatically detected functional sites.
NAEPro is powered by an interleaving network of attention and equivariant layers, which can capture global correlation in a whole sequence.
Experimental results show that our model consistently achieves the highest amino acid recovery rate, TM-score, and the lowest RMSD among all competitors.
arXiv Detail & Related papers (2023-10-06T16:08:41Z) - A Latent Diffusion Model for Protein Structure Generation [50.74232632854264]
We propose a latent diffusion model that can reduce the complexity of protein modeling.
We show that our method can effectively generate novel protein backbone structures with high designability and efficiency.
arXiv Detail & Related papers (2023-05-06T19:10:19Z) - Generating Novel, Designable, and Diverse Protein Structures by
Equivariantly Diffusing Oriented Residue Clouds [0.0]
Structure-based protein design aims to find structures that are designable, novel, and diverse.
Generative models provide a compelling alternative, by implicitly learning the low-dimensional structure of complex data.
We develop Genie, a generative model of protein structures that performs discrete-time diffusion using a cloud of oriented reference frames in 3D space.
arXiv Detail & Related papers (2023-01-29T16:44:19Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
This work focuses on learning a generative neural network on a structural ensemble of a drug-target protein.
Model tasks involve characterizing the distinct structural fluctuations of the protein bound to various drug molecules.
Results show that our geometric learning-based method enjoys both accuracy and efficiency for generating complex structural variations.
arXiv Detail & Related papers (2022-05-20T19:38:00Z) - Independent SE(3)-Equivariant Models for End-to-End Rigid Protein
Docking [57.2037357017652]
We tackle rigid body protein-protein docking, i.e., computationally predicting the 3D structure of a protein-protein complex from the individual unbound structures.
We design a novel pairwise-independent SE(3)-equivariant graph matching network to predict the rotation and translation to place one of the proteins at the right docked position.
Our model, named EquiDock, approximates the binding pockets and predicts the docking poses using keypoint matching and alignment.
arXiv Detail & Related papers (2021-11-15T18:46:37Z) - G-VAE, a Geometric Convolutional VAE for ProteinStructure Generation [41.66010308405784]
We introduce a joint geometric-neural networks approach for comparing, deforming and generating 3D protein structures.
Our method is able to generate plausible structures, different from the structures in the training data.
arXiv Detail & Related papers (2021-06-22T16:52:48Z) - Protein model quality assessment using rotation-equivariant,
hierarchical neural networks [8.373439916313018]
We present a novel deep learning approach to assess the quality of a protein model.
Our method achieves state-of-the-art results in scoring protein models submitted to recent rounds of CASP.
arXiv Detail & Related papers (2020-11-27T05:03:53Z) - Transfer Learning for Protein Structure Classification at Low Resolution [124.5573289131546]
We show that it is possible to make accurate ($geq$80%) predictions of protein class and architecture from structures determined at low ($leq$3A) resolution.
We provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function.
arXiv Detail & Related papers (2020-08-11T15:01:32Z) - BERTology Meets Biology: Interpreting Attention in Protein Language
Models [124.8966298974842]
We demonstrate methods for analyzing protein Transformer models through the lens of attention.
We show that attention captures the folding structure of proteins, connecting amino acids that are far apart in the underlying sequence, but spatially close in the three-dimensional structure.
We also present a three-dimensional visualization of the interaction between attention and protein structure.
arXiv Detail & Related papers (2020-06-26T21:50:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.