論文の概要: Bidirectional Interaction between Visual and Motor Generative Models
using Predictive Coding and Active Inference
- arxiv url: http://arxiv.org/abs/2104.09163v1
- Date: Mon, 19 Apr 2021 09:41:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-20 23:13:07.684633
- Title: Bidirectional Interaction between Visual and Motor Generative Models
using Predictive Coding and Active Inference
- Title(参考訳): 予測符号化とアクティブ推論を用いた視覚と運動生成モデルの双方向インタラクション
- Authors: Louis Annabi, Alexandre Pitti, Mathias Quoy
- Abstract要約: 本稿では,感覚予測のための生成モデルと,運動軌跡の生成モデルからなるニューラルアーキテクチャを提案する。
我々は,知覚予測のシーケンスが学習,制御,オンライン適応を導くレールとしてどのように機能するかを強調する。
- 参考スコア(独自算出の注目度): 68.8204255655161
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this work, we build upon the Active Inference (AIF) and Predictive Coding
(PC) frameworks to propose a neural architecture comprising a generative model
for sensory prediction, and a distinct generative model for motor trajectories.
We highlight how sequences of sensory predictions can act as rails guiding
learning, control and online adaptation of motor trajectories. We furthermore
inquire the effects of bidirectional interactions between the motor and the
visual modules. The architecture is tested on the control of a simulated
robotic arm learning to reproduce handwritten letters.
- Abstract(参考訳): 本研究では,能動推論(aif)と予測符号化(pc)のフレームワークを基盤として,知覚予測のための生成モデルと運動軌跡の異なる生成モデルからなるニューラルネットワークを提案する。
我々は,知覚予測のシーケンスが学習,制御,オンライン適応を導くレールとしてどのように機能するかを強調する。
さらに、モータと視覚モジュール間の双方向相互作用の効果についても検討する。
このアーキテクチャは、手書き文字を再現するシミュレーションロボットアーム学習の制御に基づいてテストされる。
関連論文リスト
- Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
本稿では,関係時間的推論を伴う3つの補助的タスクを提案し,それらを標準のディープラーニングフレームワークに統合する。
これらの補助的なタスクは、他の対話的エージェントの行動パターンを推測するための追加の監視信号を提供する。
提案手法は,標準評価指標の観点から,頑健かつ最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-27T18:57:42Z) - Dynamic Modeling of Hand-Object Interactions via Tactile Sensing [133.52375730875696]
本研究では,高分解能な触覚グローブを用いて,多種多様な物体に対して4種類のインタラクティブな動作を行う。
我々は,クロスモーダル学習フレームワーク上にモデルを構築し,視覚処理パイプラインを用いてラベルを生成し,触覚モデルを監督する。
この研究は、高密度触覚センシングによる手動物体相互作用における動的モデリングの一歩を踏み出す。
論文 参考訳(メタデータ) (2021-09-09T16:04:14Z) - Measuring and modeling the motor system with machine learning [117.44028458220427]
モーターシステムの理解における機械学習の有用性は、データの収集、測定、分析の方法に革命をもたらすことを約束している。
本稿では, ポーズ推定, 運動解析, 次元減少, 閉ループフィードバックから, ニューラル相関の理解, 機能停止まで, 機械学習の利用の増大について論じる。
論文 参考訳(メタデータ) (2021-03-22T12:42:16Z) - A Driving Behavior Recognition Model with Bi-LSTM and Multi-Scale CNN [59.57221522897815]
運転行動認識のための軌道情報に基づくニューラルネットワークモデルを提案する。
提案手法を公開BLVDデータセット上で評価し,満足な性能を実現する。
論文 参考訳(メタデータ) (2021-03-01T06:47:29Z) - Pedestrian Behavior Prediction via Multitask Learning and Categorical
Interaction Modeling [13.936894582450734]
マルチモーダルデータに頼って歩行者の軌跡や行動を同時に予測するマルチタスク学習フレームワークを提案する。
本モデルでは, トラジェクティブと動作予測を最大22%, 6%向上させる。
論文 参考訳(メタデータ) (2020-12-06T15:57:11Z) - Modeling Electrical Motor Dynamics using Encoder-Decoder with Recurrent
Skip Connection [26.49151897094165]
データ駆動型アプローチによる電動機の動力学モデリングの実現可能性について検討する。
繰り返しスキップ接続の利点を生かした新しいエンコーダデコーダアーキテクチャを提案する。
本稿では,信号複雑性が時間的ダイナミクスをモデル化する手法に与える影響を示す。
論文 参考訳(メタデータ) (2020-10-08T15:10:04Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
本稿では,リスクに敏感な最適制御に基づく安全な群集ロボットインタラクションのためのオンラインフレームワークを提案し,そのリスクをエントロピーリスク尺度でモデル化する。
私たちのモジュラーアプローチは、クラウドとロボットの相互作用を学習ベースの予測とモデルベースの制御に分離します。
シミュレーション研究と実世界の実験により、このフレームワークは、現場にいる50人以上の人間との衝突を避けながら、安全で効率的なナビゲーションを実現することができることが示された。
論文 参考訳(メタデータ) (2020-09-12T02:02:52Z) - Collaborative Motion Prediction via Neural Motion Message Passing [37.72454920355321]
我々は,アクター間の対話を明示的にモデル化し,アクター間の対話の表現を学習するために,ニューラルモーションメッセージパッシング(NMMP)を提案する。
提案したNMMPに基づいて,歩行者設定と共同歩行者設定と車両設定の2つの設定に対して,動作予測システムを設計する。
どちらのシステムも、既存のベンチマークで過去の最先端の手法より優れている。
論文 参考訳(メタデータ) (2020-03-14T10:12:54Z) - A Probabilistic Framework for Imitating Human Race Driver Behavior [31.524303667746643]
本稿では,運転行動モデリングのタスクを複数のモジュールに分割するモジュラーフレームワークProMoDを提案する。
確率的運動プリミティブを用いて大域的目標軌道分布を学習し、局所経路生成にウエイドを使用し、ニューラルネットワークにより対応する行動選択を行う。
シミュレーションカーレースセッティングの実験は、他の模倣学習アルゴリズムと比較して、模倣精度とロバスト性にかなりの利点がある。
論文 参考訳(メタデータ) (2020-01-22T20:06:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。