Bidirectional Interaction between Visual and Motor Generative Models
using Predictive Coding and Active Inference
- URL: http://arxiv.org/abs/2104.09163v1
- Date: Mon, 19 Apr 2021 09:41:31 GMT
- Title: Bidirectional Interaction between Visual and Motor Generative Models
using Predictive Coding and Active Inference
- Authors: Louis Annabi, Alexandre Pitti, Mathias Quoy
- Abstract summary: We propose a neural architecture comprising a generative model for sensory prediction, and a distinct generative model for motor trajectories.
We highlight how sequences of sensory predictions can act as rails guiding learning, control and online adaptation of motor trajectories.
- Score: 68.8204255655161
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this work, we build upon the Active Inference (AIF) and Predictive Coding
(PC) frameworks to propose a neural architecture comprising a generative model
for sensory prediction, and a distinct generative model for motor trajectories.
We highlight how sequences of sensory predictions can act as rails guiding
learning, control and online adaptation of motor trajectories. We furthermore
inquire the effects of bidirectional interactions between the motor and the
visual modules. The architecture is tested on the control of a simulated
robotic arm learning to reproduce handwritten letters.
Related papers
- Hypergraph-based Motion Generation with Multi-modal Interaction Relational Reasoning [13.294396870431399]
Real-world driving environments are characterized by dynamic and diverse interactions among vehicles.
This research introduces an integrated framework for autonomous vehicles (AVs) motion prediction.
arXiv Detail & Related papers (2024-09-18T03:30:38Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Dynamic Modeling of Hand-Object Interactions via Tactile Sensing [133.52375730875696]
In this work, we employ a high-resolution tactile glove to perform four different interactive activities on a diversified set of objects.
We build our model on a cross-modal learning framework and generate the labels using a visual processing pipeline to supervise the tactile model.
This work takes a step on dynamics modeling in hand-object interactions from dense tactile sensing.
arXiv Detail & Related papers (2021-09-09T16:04:14Z) - Measuring and modeling the motor system with machine learning [117.44028458220427]
The utility of machine learning in understanding the motor system is promising a revolution in how to collect, measure, and analyze data.
We discuss the growing use of machine learning: from pose estimation, kinematic analyses, dimensionality reduction, and closed-loop feedback, to its use in understanding neural correlates and untangling sensorimotor systems.
arXiv Detail & Related papers (2021-03-22T12:42:16Z) - A Driving Behavior Recognition Model with Bi-LSTM and Multi-Scale CNN [59.57221522897815]
We propose a neural network model based on trajectories information for driving behavior recognition.
We evaluate the proposed model on the public BLVD dataset, achieving a satisfying performance.
arXiv Detail & Related papers (2021-03-01T06:47:29Z) - Pedestrian Behavior Prediction via Multitask Learning and Categorical
Interaction Modeling [13.936894582450734]
We propose a multitask learning framework that simultaneously predicts trajectories and actions of pedestrians by relying on multimodal data.
We show that our model achieves state-of-the-art performance and improves trajectory and action prediction by up to 22% and 6% respectively.
arXiv Detail & Related papers (2020-12-06T15:57:11Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
We present an online framework for safe crowd-robot interaction based on risk-sensitive optimal control, wherein the risk is modeled by the entropic risk measure.
Our modular approach decouples the crowd-robot interaction into learning-based prediction and model-based control.
A simulation study and a real-world experiment show that the proposed framework can accomplish safe and efficient navigation while avoiding collisions with more than 50 humans in the scene.
arXiv Detail & Related papers (2020-09-12T02:02:52Z) - Collaborative Motion Prediction via Neural Motion Message Passing [37.72454920355321]
We propose neural motion message passing (NMMP) to explicitly model the interaction and learn representations for directed interactions between actors.
Based on the proposed NMMP, we design the motion prediction systems for two settings: the pedestrian setting and the joint pedestrian and vehicle setting.
Both systems outperform the previous state-of-the-art methods on several existing benchmarks.
arXiv Detail & Related papers (2020-03-14T10:12:54Z) - A Probabilistic Framework for Imitating Human Race Driver Behavior [31.524303667746643]
We propose Probabilistic Modeling of Driver behavior (ProMoD), a modular framework which splits the task of driver behavior modeling into multiple modules.
A global target trajectory distribution is learned with Probabilistic Movement Primitives, clothoids are utilized for local path generation, and the corresponding choice of actions is performed by a neural network.
Experiments in a simulated car racing setting show considerable advantages in imitation accuracy and robustness compared to other imitation learning algorithms.
arXiv Detail & Related papers (2020-01-22T20:06:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.