A Probabilistic Framework for Imitating Human Race Driver Behavior
- URL: http://arxiv.org/abs/2001.08255v2
- Date: Mon, 17 Feb 2020 09:43:38 GMT
- Title: A Probabilistic Framework for Imitating Human Race Driver Behavior
- Authors: Stefan L\"ockel, Jan Peters, Peter van Vliet
- Abstract summary: We propose Probabilistic Modeling of Driver behavior (ProMoD), a modular framework which splits the task of driver behavior modeling into multiple modules.
A global target trajectory distribution is learned with Probabilistic Movement Primitives, clothoids are utilized for local path generation, and the corresponding choice of actions is performed by a neural network.
Experiments in a simulated car racing setting show considerable advantages in imitation accuracy and robustness compared to other imitation learning algorithms.
- Score: 31.524303667746643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding and modeling human driver behavior is crucial for advanced
vehicle development. However, unique driving styles, inconsistent behavior, and
complex decision processes render it a challenging task, and existing
approaches often lack variability or robustness. To approach this problem, we
propose Probabilistic Modeling of Driver behavior (ProMoD), a modular framework
which splits the task of driver behavior modeling into multiple modules. A
global target trajectory distribution is learned with Probabilistic Movement
Primitives, clothoids are utilized for local path generation, and the
corresponding choice of actions is performed by a neural network. Experiments
in a simulated car racing setting show considerable advantages in imitation
accuracy and robustness compared to other imitation learning algorithms. The
modular architecture of the proposed framework facilitates straightforward
extensibility in driving line adaptation and sequencing of multiple movement
primitives for future research.
Related papers
- MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - Looking for a better fit? An Incremental Learning Multimodal Object
Referencing Framework adapting to Individual Drivers [0.0]
The rapid advancement of the automotive industry has rendered traditional methods of vehicle interaction, such as touch-based and voice command systems, inadequate for a widening range of non-driving related tasks, such as referencing objects outside of the vehicle.
We propose textitIcRegress, a novel regression-based incremental learning approach that adapts to changing behavior and the unique characteristics of drivers engaged in the dual task of driving and referencing objects.
arXiv Detail & Related papers (2024-01-29T12:48:56Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Inverse Reinforcement Learning Based Stochastic Driver Behavior Learning [3.4979173592795374]
Drivers have unique and rich driving behaviors when operating vehicles in traffic.
This paper presents a novel driver behavior learning approach that captures the uniqueness and richness of human driver behavior in realistic driving scenarios.
arXiv Detail & Related papers (2021-07-01T20:18:03Z) - Objective-aware Traffic Simulation via Inverse Reinforcement Learning [31.26257563160961]
We formulate traffic simulation as an inverse reinforcement learning problem.
We propose a parameter sharing adversarial inverse reinforcement learning model for dynamics-robust simulation learning.
Our proposed model is able to imitate a vehicle's trajectories in the real world while simultaneously recovering the reward function.
arXiv Detail & Related papers (2021-05-20T07:26:34Z) - Bidirectional Interaction between Visual and Motor Generative Models
using Predictive Coding and Active Inference [68.8204255655161]
We propose a neural architecture comprising a generative model for sensory prediction, and a distinct generative model for motor trajectories.
We highlight how sequences of sensory predictions can act as rails guiding learning, control and online adaptation of motor trajectories.
arXiv Detail & Related papers (2021-04-19T09:41:31Z) - Congestion-aware Multi-agent Trajectory Prediction for Collision
Avoidance [110.63037190641414]
We propose to learn congestion patterns explicitly and devise a novel "Sense--Learn--Reason--Predict" framework.
By decomposing the learning phases into two stages, a "student" can learn contextual cues from a "teacher" while generating collision-free trajectories.
In experiments, we demonstrate that the proposed model is able to generate collision-free trajectory predictions in a synthetic dataset.
arXiv Detail & Related papers (2021-03-26T02:42:33Z) - A Driving Behavior Recognition Model with Bi-LSTM and Multi-Scale CNN [59.57221522897815]
We propose a neural network model based on trajectories information for driving behavior recognition.
We evaluate the proposed model on the public BLVD dataset, achieving a satisfying performance.
arXiv Detail & Related papers (2021-03-01T06:47:29Z) - Towards a Systematic Computational Framework for Modeling Multi-Agent
Decision-Making at Micro Level for Smart Vehicles in a Smart World [8.899670429041453]
We propose a multi-agent based computational framework for modeling decision-making and strategic interaction at micro level for smart vehicles.
Our aim is to make the framework conceptually sound and practical for a range of realistic applications, including micro path planning for autonomous vehicles.
arXiv Detail & Related papers (2020-09-25T13:05:28Z) - Driver Modeling through Deep Reinforcement Learning and Behavioral Game
Theory [0.0]
It is estimated that for an autonomous vehicle to reach the same safety level of cars with drivers, millions of miles of driving tests are required.
The modeling framework presented in this paper may be used in a high-fidelity traffic simulator consisting of multiple human decision makers to reduce the time and effort spent for testing by allowing safe and quick assessment of self-driving algorithms.
arXiv Detail & Related papers (2020-03-24T18:59:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.