Machine learning approach to dynamic risk modeling of mortality in
COVID-19: a UK Biobank study
- URL: http://arxiv.org/abs/2104.09226v1
- Date: Mon, 19 Apr 2021 11:51:20 GMT
- Title: Machine learning approach to dynamic risk modeling of mortality in
COVID-19: a UK Biobank study
- Authors: Mohammad A. Dabbah, Angus B. Reed, Adam T.C. Booth, Arrash Yassaee,
Alex Despotovic, Benjamin Klasmer, Emily Binning, Mert Aral, David Plans,
Alain B. Labrique, Diwakar Mohan
- Abstract summary: The COVID-19 pandemic has created an urgent need for robust, scalable monitoring tools supporting stratification of high-risk patients.
This research aims to develop and validate prediction models, using the UK Biobank, to estimate COVID-19 mortality risk in confirmed cases.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The COVID-19 pandemic has created an urgent need for robust, scalable
monitoring tools supporting stratification of high-risk patients. This research
aims to develop and validate prediction models, using the UK Biobank, to
estimate COVID-19 mortality risk in confirmed cases. From the 11,245
participants testing positive for COVID-19, we develop a data-driven random
forest classification model with excellent performance (AUC: 0.91), using
baseline characteristics, pre-existing conditions, symptoms, and vital signs,
such that the score could dynamically assess mortality risk with disease
deterioration. We also identify several significant novel predictors of
COVID-19 mortality with equivalent or greater predictive value than established
high-risk comorbidities, such as detailed anthropometrics and prior acute
kidney failure, urinary tract infection, and pneumonias. The model design and
feature selection enables utility in outpatient settings. Possible applications
include supporting individual-level risk profiling and monitoring disease
progression across patients with COVID-19 at-scale, especially in
hospital-at-home settings.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Hospital transfer risk prediction for COVID-19 patients from a
medicalized hotel based on Diffusion GraphSAGE [7.021489981474361]
Medicalized hotels were established in Taiwan as quarantine facilities for COVID-19 patients with no or mild symptoms.
Due to limited medical care available at these hotels, it is of paramount importance to identify patients at risk of clinical deterioration.
This study aimed to develop and evaluate a graph-based deep learning approach for progressive hospital transfer risk prediction in a medicalized hotel setting.
arXiv Detail & Related papers (2022-12-31T14:59:35Z) - COVID-Net Biochem: An Explainability-driven Framework to Building
Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19
Patients from Clinical and Biochemistry Data [66.43957431843324]
We introduce COVID-Net Biochem, a versatile and explainable framework for constructing machine learning models.
We apply this framework to predict COVID-19 patient survival and the likelihood of developing Acute Kidney Injury during hospitalization.
arXiv Detail & Related papers (2022-04-24T07:38:37Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - Classification supporting COVID-19 diagnostics based on patient survey
data [82.41449972618423]
logistic regression and XGBoost classifiers, that allow for effective screening of patients for COVID-19 were generated.
The obtained classification models provided the basis for the DECODE service (decode.polsl.pl), which can serve as support in screening patients with COVID-19 disease.
This data set consists of more than 3,000 examples is based on questionnaires collected at a hospital in Poland.
arXiv Detail & Related papers (2020-11-24T17:44:01Z) - Predicting Patient COVID-19 Disease Severity by means of Statistical and
Machine Learning Analysis of Blood Cell Transcriptome Data [3.5699804146136676]
We investigated how such data from the peripheral blood of COVID-19 patients might be used to predict clinical outcomes.
Our work revealed several clinical parameters measurable in blood samples, which discriminated between healthy people and COVID-19 positive patients.
We thus developed a number of analytic methods that showed accuracy and precision for disease severity and mortality outcome predictions that were above 90%.
arXiv Detail & Related papers (2020-11-19T10:32:46Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Real-time Prediction of COVID-19 related Mortality using Electronic
Health Records [30.892335739985526]
COVID-19 Early Warning System (CovEWS) is a clinical risk scoring system for assessing COVID-19 related mortality risk.
CovEWS provides continuous real-time risk scores for individual patients with clinically meaningful predictive performance up to 192 hours (8 days) in advance.
arXiv Detail & Related papers (2020-08-31T08:07:27Z) - Individualized Prediction of COVID-19 Adverse outcomes with MLHO [9.197411456718708]
We developed an end-to-end Machine Learning framework that leverages iterative feature and algorithm selection to predict Health outcomes.
We modeled the four adverse outcomes utilizing about 600 features representing patients' pre-COVID health records and demographics.
Our results demonstrated that while demographic variables are important predictors of adverse outcomes after a COVID-19 infection, the incorporation of the past clinical records are vital for a reliable prediction model.
arXiv Detail & Related papers (2020-08-10T02:44:52Z) - An early warning tool for predicting mortality risk of COVID-19 patients
using machine learning [0.0]
A retrospective study was conducted on 375 COVID-19 positive patients admitted to Tongji Hospital (China) from January 10 to February 18, 2020.
A nomogram was developed for predicting the mortality risk among COVID-19 patients.
An integrated score (LNLCA) was calculated with the corresponding death probability.
arXiv Detail & Related papers (2020-07-29T15:16:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.