論文の概要: LSPnet: A 2D Localization-oriented Spacecraft Pose Estimation Neural
Network
- arxiv url: http://arxiv.org/abs/2104.09248v1
- Date: Mon, 19 Apr 2021 12:46:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-20 14:26:59.905763
- Title: LSPnet: A 2D Localization-oriented Spacecraft Pose Estimation Neural
Network
- Title(参考訳): LSPnet: 2Dローカライゼーション指向の宇宙画像推定ニューラルネットワーク
- Authors: Albert Garcia, Mohamed Adel Musallam, Vincent Gaudilliere, Enjie
Ghorbel, Kassem Al Ismaeil, Marcos Perez, Djamila Aouada
- Abstract要約: 本研究は,非協調宇宙船の姿勢を推定するために,畳み込みニューラルネットワーク(CNN)を用いた新しい手法を探索する。
他のアプローチとは対照的に、提案されたCNNは3D情報を必要とせずにポーズを直接取り消す。
この実験は、非協力的な宇宙船のポーズ推定における最先端技術とどのように競合するかを示す。
- 参考スコア(独自算出の注目度): 10.6872574091924
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Being capable of estimating the pose of uncooperative objects in space has
been proposed as a key asset for enabling safe close-proximity operations such
as space rendezvous, in-orbit servicing and active debris removal. Usual
approaches for pose estimation involve classical computer vision-based
solutions or the application of Deep Learning (DL) techniques. This work
explores a novel DL-based methodology, using Convolutional Neural Networks
(CNNs), for estimating the pose of uncooperative spacecrafts. Contrary to other
approaches, the proposed CNN directly regresses poses without needing any prior
3D information. Moreover, bounding boxes of the spacecraft in the image are
predicted in a simple, yet efficient manner. The performed experiments show how
this work competes with the state-of-the-art in uncooperative spacecraft pose
estimation, including works which require 3D information as well as works which
predict bounding boxes through sophisticated CNNs.
- Abstract(参考訳): 宇宙での非協力的な物体のポーズを推定できることは、宇宙ランデブー、軌道内サービシング、アクティブデブリ除去のような安全な近接操作を可能にする重要な資産として提案されている。
ポーズ推定に使用するアプローチには、古典的なコンピュータビジョンベースのソリューションやディープラーニング(DL)技術の適用が含まれる。
本研究は,非協調宇宙船の姿勢を推定するために,畳み込みニューラルネットワーク(CNN)を用いた新しいDLベースの手法を探索する。
他のアプローチとは対照的に、提案されているcnnは、事前に3d情報を必要とせずにポーズを直接レグレッシブする。
さらに、画像中の宇宙船のバウンディングボックスは、単純だが効率的な方法で予測される。
この実験は、3D情報を必要とする作業や、洗練されたCNNを通して境界ボックスを予測する作業を含む、非協力的な宇宙船のポーズ推定における最先端技術とどのように競合するかを示す。
関連論文リスト
- Self Supervised Networks for Learning Latent Space Representations of Human Body Scans and Motions [6.165163123577484]
本稿では,3次元人体解析・処理の分野におけるいくつかの基本的な問題に対処するために,自己教師型ニューラルネットワークモデルを提案する。
身体形状とポーズの潜在空間表現を検索するための新しいアーキテクチャであるVariShaPEを提案する。
第二に、潜時空間の幾何学を学習するフレームワークであるMoGeNで潜時符号の推定を補完する。
論文 参考訳(メタデータ) (2024-11-05T19:59:40Z) - Leveraging Neural Radiance Fields for Pose Estimation of an Unknown Space Object during Proximity Operations [14.624172952608653]
本稿では、未知のターゲットに「オフ・ザ・シェルフ」宇宙船のポーズ推定装置を適用可能な新しい手法を提案する。
対象画像のスパースコレクションを用いてNeRFモデルをトレーニングし,視点と照明の両面で多様な大きなデータセットを生成する。
本手法は,スパース画像の集合から,市販の宇宙船のポーズ推定ネットワークの訓練に有効であることが実証された。
論文 参考訳(メタデータ) (2024-05-21T12:34:03Z) - OccNeRF: Advancing 3D Occupancy Prediction in LiDAR-Free Environments [77.0399450848749]
本稿では,OccNeRF法を用いて,3次元監視なしで占有ネットワークを訓練する手法を提案する。
我々は、再構成された占有領域をパラメータ化し、サンプリング戦略を再編成し、カメラの無限知覚範囲に合わせる。
意味的占有予測のために,事前学習した開語彙2Dセグメンテーションモデルの出力をフィルタリングし,プロンプトを洗練するためのいくつかの戦略を設計する。
論文 参考訳(メタデータ) (2023-12-14T18:58:52Z) - A Survey on Deep Learning-Based Monocular Spacecraft Pose Estimation:
Current State, Limitations and Prospects [7.08026800833095]
非協力宇宙船の姿勢を推定することは、軌道上の視覚ベースのシステムを実現するための重要なコンピュータビジョン問題である。
コンピュータビジョンの一般的な傾向に続き、この問題を解決するためにディープラーニング(DL)手法を活用する研究がますます増えている。
有望な研究段階の結果にもかかわらず、実際のミッションでこのような方法が使われるのを防ぐ大きな課題が今も残っている。
論文 参考訳(メタデータ) (2023-05-12T09:52:53Z) - Geometric-aware Pretraining for Vision-centric 3D Object Detection [77.7979088689944]
GAPretrainと呼ばれる新しい幾何学的事前学習フレームワークを提案する。
GAPretrainは、複数の最先端検出器に柔軟に適用可能なプラグアンドプレイソリューションとして機能する。
BEVFormer法を用いて, nuScenes val の 46.2 mAP と 55.5 NDS を実現し, それぞれ 2.7 と 2.1 点を得た。
論文 参考訳(メタデータ) (2023-04-06T14:33:05Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
本稿では,ニューラルネットワークアーキテクチャを利用したポーズ推定ソフトウェアを提案する。
我々は、低消費電力の機械学習アクセラレーターが宇宙での人工知能の活用を可能にしていることを示す。
論文 参考訳(メタデータ) (2022-04-07T08:53:18Z) - Aligning Silhouette Topology for Self-Adaptive 3D Human Pose Recovery [70.66865453410958]
アーティキュレーション中心の2D/3Dポーズ監視は、既存の多くの人間のポーズ推定技術においてコアトレーニング目標を形成する。
本稿では,ソース学習モデルベース回帰器を適応させるために,シルエット監視のみに依存する新しいフレームワークを提案する。
我々は、トポロジカル・スケルトン表現を生シルエットから切り離すために、一連の畳み込みに優しい空間変換を開発する。
論文 参考訳(メタデータ) (2022-04-04T06:58:15Z) - Space Non-cooperative Object Active Tracking with Deep Reinforcement
Learning [1.212848031108815]
DRLAVTと命名されたDQNアルゴリズムに基づくエンドツーエンドのアクティブなトラッキング手法を提案する。
追尾宇宙船のアプローチを、色やRGBD画像にのみ依存した任意の空間の非協力目標に導くことができる。
位置ベースのビジュアルサーボベースラインアルゴリズムでは、最先端の2DモノクロトラッカーであるSiamRPNをはるかに上回っている。
論文 参考訳(メタデータ) (2021-12-18T06:12:24Z) - SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for
Spatial-Aware Visual Representations [85.38562724999898]
我々はSimIPUと呼ばれる2Dイメージと3Dポイントクラウドの教師なし事前学習戦略を提案する。
具体的には、モーダル内空間認識モジュールとモーダル間特徴相互作用モジュールからなるマルチモーダルコントラスト学習フレームワークを開発する。
我々の知る限りでは、屋外マルチモーダルデータセットに対する対照的な学習事前学習戦略を探求する最初の研究である。
論文 参考訳(メタデータ) (2021-12-09T03:27:00Z) - MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty
Propagation [4.202461384355329]
我々は,高密度な対応や幾何学を自己教師型で学習する,新しい3次元オブジェクト検出フレームワークMonoRUnを提案する。
提案手法は,KITTIベンチマークの最先端手法より優れている。
論文 参考訳(メタデータ) (2021-03-23T15:03:08Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。