論文の概要: LAFEAT: Piercing Through Adversarial Defenses with Latent Features
- arxiv url: http://arxiv.org/abs/2104.09284v2
- Date: Tue, 20 Apr 2021 07:35:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-21 11:27:39.144619
- Title: LAFEAT: Piercing Through Adversarial Defenses with Latent Features
- Title(参考訳): LAFEAT: 敵対的防御と潜在的な機能によるピアリング
- Authors: Yunrui Yu, Xitong Gao, Cheng-Zhong Xu
- Abstract要約: 特定の"ロバスト"モデルの潜在機能は、驚くほど敵の攻撃に影響を受けやすいことを示す。
勾配降下ステップ、すなわちLAFEATで潜伏機能を利用する統一$ell_infty$-normホワイトボックス攻撃アルゴリズムを紹介します。
- 参考スコア(独自算出の注目度): 15.189068478164337
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep convolutional neural networks are susceptible to adversarial attacks.
They can be easily deceived to give an incorrect output by adding a tiny
perturbation to the input. This presents a great challenge in making CNNs
robust against such attacks. An influx of new defense techniques have been
proposed to this end. In this paper, we show that latent features in certain
"robust" models are surprisingly susceptible to adversarial attacks. On top of
this, we introduce a unified $\ell_\infty$-norm white-box attack algorithm
which harnesses latent features in its gradient descent steps, namely LAFEAT.
We show that not only is it computationally much more efficient for successful
attacks, but it is also a stronger adversary than the current state-of-the-art
across a wide range of defense mechanisms. This suggests that model robustness
could be contingent on the effective use of the defender's hidden components,
and it should no longer be viewed from a holistic perspective.
- Abstract(参考訳): 深層畳み込みニューラルネットワークは敵の攻撃を受けやすい。
入力に小さな摂動を加えることで、誤った出力を与えるように容易に騙すことができる。
このような攻撃に対してCNNを堅牢にする上で,これは大きな課題だ。
この目的のために新たな防御技術が提案されている。
本稿では,特定の「ロバスト」モデルにおける潜在的特徴が,敵攻撃の影響を受けやすいことを示す。
これに加えて、勾配降下ステップ(LAFEAT)における潜伏特徴を利用する統合された$\ell_\infty$-normホワイトボックス攻撃アルゴリズムを導入する。
攻撃を成功させるためには計算的にはるかに効率的であるだけでなく、様々な防御機構における現在の最先端技術よりも強力な敵であることを示す。
これは、モデルのロバスト性がディフェンダーの隠れたコンポーネントの有効利用に起因しており、もはや全体論的観点から見るべきではないことを示唆している。
関連論文リスト
- BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
本報告では,防衛後においてもバックドア攻撃が有効であり続けるという現実的なシナリオにおける脅威を明らかにする。
バックドア検出や細調整防御のモデル化に抵抗性のあるemphtoolnsアタックを導入する。
論文 参考訳(メタデータ) (2023-11-20T02:21:49Z) - Understanding the Robustness of Randomized Feature Defense Against
Query-Based Adversarial Attacks [23.010308600769545]
ディープニューラルネットワークは、元の画像に近いサンプルを見つける敵の例に弱いが、モデルを誤分類させる可能性がある。
モデル中間層における隠れた特徴にランダムノイズを付加することにより,ブラックボックス攻撃に対する簡易かつ軽量な防御法を提案する。
本手法は,スコアベースと決定ベースの両方のブラックボックス攻撃に対するモデルのレジリエンスを効果的に向上させる。
論文 参考訳(メタデータ) (2023-10-01T03:53:23Z) - Efficient Defense Against Model Stealing Attacks on Convolutional Neural
Networks [0.548924822963045]
モデル盗難攻撃は知的財産の盗難や他のセキュリティやプライバシーのリスクにつながる可能性がある。
モデル盗難攻撃に対する現在の最先端の防御は、予測確率に摂動を加えることを示唆している。
我々は、シンプルで効果的で効率的な防衛代替案を提案する。
論文 参考訳(メタデータ) (2023-09-04T22:25:49Z) - Isolation and Induction: Training Robust Deep Neural Networks against
Model Stealing Attacks [51.51023951695014]
既存のモデル盗難防衛は、被害者の後部確率に偽りの摂動を加え、攻撃者を誤解させる。
本稿では,モデルステルス防衛のための新規かつ効果的なトレーニングフレームワークである分離誘導(InI)を提案する。
モデルの精度を損なうモデル予測に摂動を加えるのとは対照的に、我々はモデルを訓練して、盗むクエリに対して非形式的なアウトプットを生成する。
論文 参考訳(メタデータ) (2023-08-02T05:54:01Z) - The Best Defense is a Good Offense: Adversarial Augmentation against
Adversarial Attacks [91.56314751983133]
A5$は、手元の入力に対する攻撃が失敗することを保証するために防御的摂動を構築するためのフレームワークである。
我々は,地上の真理ラベルを無視するロバスト化ネットワークを用いて,実機での防御強化を効果的に示す。
また、A5$を適用して、確実に堅牢な物理オブジェクトを作成する方法も示します。
論文 参考訳(メタデータ) (2023-05-23T16:07:58Z) - Based-CE white-box adversarial attack will not work using super-fitting [10.34121642283309]
ディープニューラルネットワーク(DNN)はその強力な性能のため、様々な分野で広く利用されている。
近年の研究では、ディープラーニングモデルは敵の攻撃に弱いことが示されている。
本稿では,モデルスーパーフィット状態を用いた新しい防御手法を提案する。
論文 参考訳(メタデータ) (2022-05-04T09:23:00Z) - Sparse Coding Frontend for Robust Neural Networks [11.36192454455449]
ディープニューラルネットワークは、小さくて逆向きに作られた摂動に弱いことが知られている。
現在の対人攻撃に対する防御方法は、対人訓練の変種である。
本稿では,クリーン画像に基づくスパース符号化に基づく根本的に異なる防御手法を提案する。
論文 参考訳(メタデータ) (2021-04-12T11:14:32Z) - Attack Agnostic Adversarial Defense via Visual Imperceptible Bound [70.72413095698961]
本研究の目的は、目視攻撃と目視攻撃の両方に対して一定の範囲内で堅牢な防衛モデルを設計することである。
提案するディフェンスモデルは,MNIST,CIFAR-10,Tiny ImageNetデータベース上で評価される。
提案アルゴリズムは攻撃非依存であり,攻撃アルゴリズムの知識を必要としない。
論文 参考訳(メタデータ) (2020-10-25T23:14:26Z) - Online Alternate Generator against Adversarial Attacks [144.45529828523408]
ディープラーニングモデルは、実際の画像に準知覚可能なノイズを加えることによって合成される敵の例に非常に敏感である。
対象ネットワークのパラメータをアクセスしたり変更したりする必要のない,ポータブルな防御手法であるオンライン代替ジェネレータを提案する。
提案手法は,入力画像のスクラッチから別の画像をオンライン合成することで,対向雑音を除去・破壊する代わりに機能する。
論文 参考訳(メタデータ) (2020-09-17T07:11:16Z) - RayS: A Ray Searching Method for Hard-label Adversarial Attack [99.72117609513589]
我々は、レイサーチ攻撃(RayS)を提案し、これはハードラベル攻撃の有効性と効率を大幅に改善する。
モデルの正当性チェックとしても使用できる。
論文 参考訳(メタデータ) (2020-06-23T07:01:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。