Automatic glissade determination through a mathematical model in
electrooculographic records
- URL: http://arxiv.org/abs/2104.09492v1
- Date: Mon, 19 Apr 2021 17:56:55 GMT
- Title: Automatic glissade determination through a mathematical model in
electrooculographic records
- Authors: Camilo Vel\'azquez-Rodr\'iguez, Rodolfo Garc\'ia-Berm\'udez, Fernando
Rojas-Ruiz, Roberto Becerra-Garc\'ia, Luis Vel\'azquez
- Abstract summary: The glissadic overshoot is characterized by an unwanted type of movement known as glissades.
In this paper we develop a procedure to determine if a specific saccade have a glissade appended to the end of it.
A machine learning algorithm is trained, returning expected responses of the presence or not of this kind of ocular movement.
- Score: 58.720142291102135
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The glissadic overshoot is characterized by an unwanted type of movement
known as glissades. The glissades are a short ocular movement that describe the
failure of the neural programming of saccades to move the eyes in order to
reach a specific target. In this paper we develop a procedure to determine if a
specific saccade have a glissade appended to the end of it. The use of the
third partial sum of the Gauss series as mathematical model, a comparison
between some specific parameters and the RMSE error are the steps made to reach
this goal. Finally a machine learning algorithm is trained, returning expected
responses of the presence or not of this kind of ocular movement.
Related papers
- Binocular-Guided 3D Gaussian Splatting with View Consistency for Sparse View Synthesis [53.702118455883095]
We propose a novel method for synthesizing novel views from sparse views with Gaussian Splatting.
Our key idea lies in exploring the self-supervisions inherent in the binocular stereo consistency between each pair of binocular images.
Our method significantly outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2024-10-24T15:10:27Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3D Gaussian splatting (3DGS) has shown promising results in rendering image and surface reconstruction.
This paper introduces R2$-Gaussian, the first 3DGS-based framework for sparse-view tomographic reconstruction.
arXiv Detail & Related papers (2024-05-31T08:39:02Z) - SplatArmor: Articulated Gaussian splatting for animatable humans from
monocular RGB videos [15.74530749823217]
We propose SplatArmor, a novel approach for recovering detailed and animatable human models by armoring' a parameterized body model with 3D Gaussians.
Our approach represents the human as a set of 3D Gaussians within a canonical space, whose articulation is defined by extending the skinning of the underlying SMPL geometry.
We show compelling results on the ZJU MoCap and People Snapshot datasets, which underscore the effectiveness of our method for controllable human synthesis.
arXiv Detail & Related papers (2023-11-17T18:47:07Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
Existing detection methods commonly use a parameterized bounding box (BBox) to model and detect (horizontal) objects.
We argue that such a mechanism has fundamental limitations in building an effective regression loss for rotation detection.
We propose to model the rotated objects as Gaussian distributions.
We extend our approach from 2-D to 3-D with a tailored algorithm design to handle the heading estimation.
arXiv Detail & Related papers (2022-09-22T07:50:48Z) - 3D Skeleton-based Human Motion Prediction with Manifold-Aware GAN [3.1313293632309827]
We propose a novel solution for 3D skeleton-based human motion prediction.
We build a manifold-aware Wasserstein generative adversarial model that captures the temporal and spatial dependencies of human motion.
Experiments have been conducted on CMU MoCap and Human 3.6M datasets.
arXiv Detail & Related papers (2022-03-01T20:49:13Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - TomoSLAM: factor graph optimization for rotation angle refinement in
microtomography [0.0]
Relative trajectories of a sample, a detector, and a signal source are traditionally considered to be known.
Due to mechanical backlashes, rotation sensor measurement errors, thermal deformations real trajectory differs from desired ones.
The scientific novelty of this work is to consider the problem of trajectory refinement in microtomography as a SLAM problem.
arXiv Detail & Related papers (2021-11-10T08:00:46Z) - A-NeRF: Surface-free Human 3D Pose Refinement via Neural Rendering [13.219688351773422]
We propose a test-time optimization approach for monocular motion capture that learns a volumetric body model of the user in a self-supervised manner.
Our approach is self-supervised and does not require any additional ground truth labels for appearance, pose, or 3D shape.
We demonstrate that our novel combination of a discriminative pose estimation technique with surface-free analysis-by-synthesis outperforms purely discriminative monocular pose estimation approaches.
arXiv Detail & Related papers (2021-02-11T18:58:31Z) - Online Body Schema Adaptation through Cost-Sensitive Active Learning [63.84207660737483]
The work was implemented in a simulation environment, using the 7DoF arm of the iCub robot simulator.
A cost-sensitive active learning approach is used to select optimal joint configurations.
The results show cost-sensitive active learning has similar accuracy to the standard active learning approach, while reducing in about half the executed movement.
arXiv Detail & Related papers (2021-01-26T16:01:02Z) - Point process models for sequence detection in high-dimensional neural
spike trains [29.073129195368235]
We develop a point process model that characterizes fine-scale sequences at the level of individual spikes.
This ultra-sparse representation of sequence events opens new possibilities for spike train modeling.
arXiv Detail & Related papers (2020-10-10T02:21:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.