Binocular-Guided 3D Gaussian Splatting with View Consistency for Sparse View Synthesis
- URL: http://arxiv.org/abs/2410.18822v2
- Date: Sun, 27 Oct 2024 02:22:59 GMT
- Title: Binocular-Guided 3D Gaussian Splatting with View Consistency for Sparse View Synthesis
- Authors: Liang Han, Junsheng Zhou, Yu-Shen Liu, Zhizhong Han,
- Abstract summary: We propose a novel method for synthesizing novel views from sparse views with Gaussian Splatting.
Our key idea lies in exploring the self-supervisions inherent in the binocular stereo consistency between each pair of binocular images.
Our method significantly outperforms the state-of-the-art methods.
- Score: 53.702118455883095
- License:
- Abstract: Novel view synthesis from sparse inputs is a vital yet challenging task in 3D computer vision. Previous methods explore 3D Gaussian Splatting with neural priors (e.g. depth priors) as an additional supervision, demonstrating promising quality and efficiency compared to the NeRF based methods. However, the neural priors from 2D pretrained models are often noisy and blurry, which struggle to precisely guide the learning of radiance fields. In this paper, We propose a novel method for synthesizing novel views from sparse views with Gaussian Splatting that does not require external prior as supervision. Our key idea lies in exploring the self-supervisions inherent in the binocular stereo consistency between each pair of binocular images constructed with disparity-guided image warping. To this end, we additionally introduce a Gaussian opacity constraint which regularizes the Gaussian locations and avoids Gaussian redundancy for improving the robustness and efficiency of inferring 3D Gaussians from sparse views. Extensive experiments on the LLFF, DTU, and Blender datasets demonstrate that our method significantly outperforms the state-of-the-art methods.
Related papers
- GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views [67.34073368933814]
We propose a generalizable Gaussian Splatting approach for high-resolution image rendering under a sparse-view camera setting.
We train our Gaussian parameter regression module on human-only data or human-scene data, jointly with a depth estimation module to lift 2D parameter maps to 3D space.
Experiments on several datasets demonstrate that our method outperforms state-of-the-art methods while achieving an exceeding rendering speed.
arXiv Detail & Related papers (2024-11-18T08:18:44Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - Uncertainty-guided Optimal Transport in Depth Supervised Sparse-View 3D Gaussian [49.21866794516328]
3D Gaussian splatting has demonstrated impressive performance in real-time novel view synthesis.
Previous approaches have incorporated depth supervision into the training of 3D Gaussians to mitigate overfitting.
We introduce a novel method to supervise the depth distribution of 3D Gaussians, utilizing depth priors with integrated uncertainty estimates.
arXiv Detail & Related papers (2024-05-30T03:18:30Z) - SGD: Street View Synthesis with Gaussian Splatting and Diffusion Prior [53.52396082006044]
Current methods struggle to maintain rendering quality at the viewpoint that deviates significantly from the training viewpoints.
This issue stems from the sparse training views captured by a fixed camera on a moving vehicle.
We propose a novel approach that enhances the capacity of 3DGS by leveraging prior from a Diffusion Model.
arXiv Detail & Related papers (2024-03-29T09:20:29Z) - CoherentGS: Sparse Novel View Synthesis with Coherent 3D Gaussians [18.42203035154126]
We introduce a structured Gaussian representation that can be controlled in 2D image space.
We then constraint the Gaussians, in particular their position, and prevent them from moving independently during optimization.
We demonstrate significant improvements compared to the state-of-the-art sparse-view NeRF-based approaches on a variety of scenes.
arXiv Detail & Related papers (2024-03-28T15:27:13Z) - Sparse-view CT Reconstruction with 3D Gaussian Volumetric Representation [13.667470059238607]
Sparse-view CT is a promising strategy for reducing the radiation dose of traditional CT scans.
Recently, 3D Gaussian has been applied to model complex natural scenes.
We investigate their potential for sparse-view CT reconstruction.
arXiv Detail & Related papers (2023-12-25T09:47:33Z) - GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis [70.24111297192057]
We present a new approach, termed GPS-Gaussian, for synthesizing novel views of a character in a real-time manner.
The proposed method enables 2K-resolution rendering under a sparse-view camera setting.
arXiv Detail & Related papers (2023-12-04T18:59:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.