論文の概要: An Efficient Approach for Anomaly Detection in Traffic Videos
- arxiv url: http://arxiv.org/abs/2104.09758v1
- Date: Tue, 20 Apr 2021 04:43:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-21 13:48:42.187131
- Title: An Efficient Approach for Anomaly Detection in Traffic Videos
- Title(参考訳): 交通映像における異常検出の効率的な手法
- Authors: Keval Doshi, Yasin Yilmaz
- Abstract要約: 本稿では,エッジデバイスで動作可能な映像異常検出システムのための効率的な手法を提案する。
提案手法は,シーンの変化を検出し,破損したフレームを除去するプリプロセッシングモジュールを含む。
また,新しいシーンに迅速に適応し,類似度統計量の変化を検出するシーケンシャルな変化検出アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 30.83924581439373
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Due to its relevance in intelligent transportation systems, anomaly detection
in traffic videos has recently received much interest. It remains a difficult
problem due to a variety of factors influencing the video quality of a
real-time traffic feed, such as temperature, perspective, lighting conditions,
and so on. Even though state-of-the-art methods perform well on the available
benchmark datasets, they need a large amount of external training data as well
as substantial computational resources. In this paper, we propose an efficient
approach for a video anomaly detection system which is capable of running at
the edge devices, e.g., on a roadside camera. The proposed approach comprises a
pre-processing module that detects changes in the scene and removes the
corrupted frames, a two-stage background modelling module and a two-stage
object detector. Finally, a backtracking anomaly detection algorithm computes a
similarity statistic and decides on the onset time of the anomaly. We also
propose a sequential change detection algorithm that can quickly adapt to a new
scene and detect changes in the similarity statistic. Experimental results on
the Track 4 test set of the 2021 AI City Challenge show the efficacy of the
proposed framework as we achieve an F1-score of 0.9157 along with 8.4027 root
mean square error (RMSE) and are ranked fourth in the competition.
- Abstract(参考訳): インテリジェントな交通システムとの関係から,近年,交通映像の異常検出が注目されている。
温度、視界、照明条件などのリアルタイムトラフィックフィードの画質に影響を与える様々な要因があるため、これは依然として難しい問題である。
state-of-the-artメソッドは利用可能なベンチマークデータセットでうまく動作しますが、大量の外部トレーニングデータとかなりの計算リソースが必要です。
本稿では,エッジデバイス,例えば路面カメラで動作可能な映像異常検出システムに対して,効率的な手法を提案する。
提案手法は,シーンの変化を検知し,破損したフレームを除去する前処理モジュールと,2段階の背景モデリングモジュールと2段階の物体検出モジュールを備える。
最後に、バックトラッキング異常検出アルゴリズムが類似度統計を計算し、異常の開始時刻を決定する。
また,新しいシーンに迅速に適応し,類似度統計量の変化を検出するシーケンシャルな変化検出アルゴリズムを提案する。
2021年AIシティチャレンジのトラック4テストセットの実験結果は、F1スコアの0.9157と8.4027ルート平均二乗誤差(RMSE)を達成し、競争で第4位となるフレームワークの有効性を示している。
関連論文リスト
- DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
複数物体追跡(MOT)は、自律運転における知覚システムの基本的構成要素である。
運転システムの安全性の追求にもかかわらず、テスト時間条件における領域シフトに対するMOT適応問題に対する解決策は提案されていない。
我々はMOTの総合的なテスト時間適応フレームワークであるDARTHを紹介する。
論文 参考訳(メタデータ) (2023-10-03T10:10:42Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Real-Time Driver Monitoring Systems through Modality and View Analysis [28.18784311981388]
ドライバーの気晴らしが道路事故の主要な原因であることが知られている。
State-of-the-artメソッドはレイテンシを無視しながら精度を優先する。
本稿では,ビデオフレーム間の時間的関係を無視した時間効率な検出モデルを提案する。
論文 参考訳(メタデータ) (2022-10-17T21:22:41Z) - Real-Time Accident Detection in Traffic Surveillance Using Deep Learning [0.8808993671472349]
本稿では,交通監視用交差点における事故検出のための新しい効率的な枠組みを提案する。
提案手法は,最先端のYOLOv4法に基づく効率的かつ高精度な物体検出を含む,3つの階層的なステップから構成される。
提案フレームワークのロバスト性は,様々な照明条件でYouTubeから収集した映像シーケンスを用いて評価する。
論文 参考訳(メタデータ) (2022-08-12T19:07:20Z) - Dual-Modality Vehicle Anomaly Detection via Bilateral Trajectory Tracing [42.03797195839054]
本稿では,異常車両のロバスト検出のためのモジュール化手法を提案する。
車両検出・追跡モジュールには, YOLOv5とマルチスケールトラッキングを採用し, 異常の局所化を行った。
NVIDIA 2021 AI City Challengeのトラック4テストセットで行われた実験では、0.9302 F1スコアと3.4039ルート平均二乗誤差(RMSE)が得られた。
論文 参考訳(メタデータ) (2021-06-09T12:04:25Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
本稿では,フレーム予測と適切な設計による新規で頑健な非教師付きビデオ異常検出手法を提案する。
提案手法は,CUHK Avenueデータセット上で88.3%のフレームレベルAUROCスコアを得る。
論文 参考訳(メタデータ) (2020-11-05T11:34:12Z) - Unsupervised Feature Learning for Event Data: Direct vs Inverse Problem
Formulation [53.850686395708905]
イベントベースのカメラは、ピクセルごとの明るさ変化の非同期ストリームを記録する。
本稿では,イベントデータからの表現学習のための単一層アーキテクチャに焦点を当てる。
我々は,最先端手法と比較して,認識精度が最大9%向上したことを示す。
論文 参考訳(メタデータ) (2020-09-23T10:40:03Z) - A Background-Agnostic Framework with Adversarial Training for Abnormal
Event Detection in Video [120.18562044084678]
近年,ビデオにおける異常事象検出は複雑なコンピュータビジョンの問題として注目されている。
通常のイベントのみを含むトレーニングビデオから学習するバックグラウンドに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-27T18:39:24Z) - Anomalous Motion Detection on Highway Using Deep Learning [14.617786106427834]
本稿では,新しい異常検出データセットであるハイウェイ交通異常(HTA)データセットを提案する。
我々は、最先端のディープラーニング異常検出モデルを評価し、これらの手法に新しいバリエーションを提案する。
論文 参考訳(メタデータ) (2020-06-15T05:40:11Z) - Tracking Road Users using Constraint Programming [79.32806233778511]
本稿では,マルチオブジェクトトラッキング(MOT)問題のトラッキング・バイ・検出パラダイムに見られるデータアソシエーションフェーズに対する制約プログラミング(CP)アプローチを提案する。
提案手法は車両追跡データを用いてテストし,UA-DETRACベンチマークの上位手法よりも優れた結果を得た。
論文 参考訳(メタデータ) (2020-03-10T00:04:32Z) - A Video Analysis Method on Wanfang Dataset via Deep Neural Network [8.485930905198982]
本稿では,スポーツ競技におけるリアルタイム多目的検出機能と,ディープラーニングに基づく公共交通機関における歩行者フロー検出機能について述べる。
提案アルゴリズムに基づいて,主要なテストデータセットとしてwanfangスポーツコンペティションデータセットを採用する。
私たちの作業は、歩行者のフロー検出や歩行者のアラームタスクにも利用できます。
論文 参考訳(メタデータ) (2020-02-28T04:09:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。