Unsupervised Hierarchical Graph Representation Learning by Mutual
Information Maximization
- URL: http://arxiv.org/abs/2003.08420v3
- Date: Wed, 29 Jul 2020 03:05:29 GMT
- Title: Unsupervised Hierarchical Graph Representation Learning by Mutual
Information Maximization
- Authors: Fei Ding, Xiaohong Zhang, Justin Sybrandt, Ilya Safro
- Abstract summary: We present an unsupervised graph representation learning method, Unsupervised Hierarchical Graph Representation (UHGR)
Our method focuses on maximizing mutual information between "local" and high-level "global" representations.
The results show that the proposed method achieves comparable results to state-of-the-art supervised methods on several benchmarks.
- Score: 8.14036521415919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph representation learning based on graph neural networks (GNNs) can
greatly improve the performance of downstream tasks, such as node and graph
classification. However, the general GNN models do not aggregate node
information in a hierarchical manner, and can miss key higher-order structural
features of many graphs. The hierarchical aggregation also enables the graph
representations to be explainable. In addition, supervised graph representation
learning requires labeled data, which is expensive and error-prone. To address
these issues, we present an unsupervised graph representation learning method,
Unsupervised Hierarchical Graph Representation (UHGR), which can generate
hierarchical representations of graphs. Our method focuses on maximizing mutual
information between "local" and high-level "global" representations, which
enables us to learn the node embeddings and graph embeddings without any
labeled data. To demonstrate the effectiveness of the proposed method, we
perform the node and graph classification using the learned node and graph
embeddings. The results show that the proposed method achieves comparable
results to state-of-the-art supervised methods on several benchmarks. In
addition, our visualization of hierarchical representations indicates that our
method can capture meaningful and interpretable clusters.
Related papers
- DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Saliency-Aware Regularized Graph Neural Network [39.82009838086267]
We propose the Saliency-Aware Regularized Graph Neural Network (SAR-GNN) for graph classification.
We first estimate the global node saliency by measuring the semantic similarity between the compact graph representation and node features.
Then the learned saliency distribution is leveraged to regularize the neighborhood aggregation of the backbone.
arXiv Detail & Related papers (2024-01-01T13:44:16Z) - Towards Explanation for Unsupervised Graph-Level Representation Learning [108.31036962735911]
Existing explanation methods focus on the supervised settings, eg, node classification and graph classification, while the explanation for unsupervised graph-level representation learning is still unexplored.
In this paper, we advance the Information Bottleneck principle (IB) to tackle the proposed explanation problem for unsupervised graph representations, which leads to a novel principle, textitUnsupervised Subgraph Information Bottleneck (USIB)
We also theoretically analyze the connection between graph representations and explanatory subgraphs on the label space, which reveals that the robustness of representations benefit the fidelity of explanatory subgraphs.
arXiv Detail & Related papers (2022-05-20T02:50:15Z) - Self-supervised Consensus Representation Learning for Attributed Graph [15.729417511103602]
We introduce self-supervised learning mechanism to graph representation learning.
We propose a novel Self-supervised Consensus Representation Learning framework.
Our proposed SCRL method treats graph from two perspectives: topology graph and feature graph.
arXiv Detail & Related papers (2021-08-10T07:53:09Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
We propose a Graph Multiset Transformer (GMT) that captures the interaction between nodes according to their structural dependencies.
Our experimental results show that GMT significantly outperforms state-of-the-art graph pooling methods on graph classification benchmarks.
arXiv Detail & Related papers (2021-02-23T07:45:58Z) - CommPOOL: An Interpretable Graph Pooling Framework for Hierarchical
Graph Representation Learning [74.90535111881358]
We propose a new interpretable graph pooling framework - CommPOOL.
It can capture and preserve the hierarchical community structure of graphs in the graph representation learning process.
CommPOOL is a general and flexible framework for hierarchical graph representation learning.
arXiv Detail & Related papers (2020-12-10T21:14:18Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph.
A novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure.
arXiv Detail & Related papers (2020-09-15T13:59:28Z) - Graph InfoClust: Leveraging cluster-level node information for
unsupervised graph representation learning [12.592903558338444]
We propose a graph representation learning method called Graph InfoClust.
It seeks to additionally capture cluster-level information content.
This optimization leads the node representations to capture richer information and nodal interactions, which improves their quality.
arXiv Detail & Related papers (2020-09-15T09:33:20Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.