論文の概要: Boosting Masked Face Recognition with Multi-Task ArcFace
- arxiv url: http://arxiv.org/abs/2104.09874v2
- Date: Wed, 21 Apr 2021 06:54:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-22 11:18:45.689490
- Title: Boosting Masked Face Recognition with Multi-Task ArcFace
- Title(参考訳): マルチタスクArcFaceによるマスク付き顔認識
- Authors: David Montero, Marcos Nieto, Peter Leskovsky and Naiara Aginako
- Abstract要約: 新型コロナウイルス(COVID-19)による世界的な健康危機を考えると、口と鼻を覆うマスクは日常の衣服に欠かせないものになっています。
この尺度は、マスクされた顔で機能するよう設計されていないため、最先端の顔認識モデルをロープに乗せている。
完全なトレーニングパイプラインがArcFace作業に基づいて提示され、バックボーンとロス関数のいくつかの修正が行われている。
- 参考スコア(独自算出の注目度): 0.973681576519524
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we address the problem of face recognition with masks. Given
the global health crisis caused by COVID-19, mouth and nose-covering masks have
become an essential everyday-clothing-accessory. This sanitary measure has put
the state-of-the-art face recognition models on the ropes since they have not
been designed to work with masked faces. In addition, the need has arisen for
applications capable of detecting whether the subjects are wearing masks to
control the spread of the virus. To overcome these problems a full training
pipeline is presented based on the ArcFace work, with several modifications for
the backbone and the loss function. From the original face-recognition dataset,
a masked version is generated using data augmentation, and both datasets are
combined during the training process. The selected network, based on ResNet-50,
is modified to also output the probability of mask usage without adding any
computational cost. Furthermore, the ArcFace loss is combined with the
mask-usage classification loss, resulting in a new function named Multi-Task
ArcFace (MTArcFace). Experimental results show that the proposed approach
highly boosts the original model accuracy when dealing with masked faces, while
preserving almost the same accuracy on the original non-masked datasets.
Furthermore, it achieves an average accuracy of 99.78% in mask-usage
classification.
- Abstract(参考訳): 本稿では,マスクを用いた顔認識の問題に対処する。
新型コロナウイルス(COVID-19)による世界的な健康危機を考えると、口と鼻を覆うマスクは日常的に着用することが不可欠になっている。
この衛生対策により、現在最先端の顔認識モデルは、マスクされた顔を扱うように設計されていないため、ロープの上に置かれている。
また、被検体がマスクを着用しているかどうかを検知してウイルスの拡散を制御できるアプリケーションの必要性も生じている。
これらの問題を解決するために、バックボーンとロス関数にいくつかの変更を加えて、ArcFaceの作業に基づいて完全なトレーニングパイプラインが提示される。
元の顔認識データセットから、データ拡張を使用してマスク付きバージョンを生成し、トレーニングプロセス中に両方のデータセットを組み合わせる。
resnet-50に基づく選択されたネットワークは、計算コストを追加することなくマスク使用確率を出力するように修正されている。
さらに、ArcFaceの損失とマスク使用率の分類損失が組み合わさって、Multi-Task ArcFace (MTArcFace)と呼ばれる新しい関数が生まれる。
実験の結果,提案手法はマスキングされていないデータセットでほぼ同じ精度を維持しつつ,マスク面を扱う際の元のモデルの精度を高く向上させることがわかった。
さらに、マスク使用分類の平均精度は99.78%である。
関連論文リスト
- Seeing through the Mask: Multi-task Generative Mask Decoupling Face
Recognition [47.248075664420874]
現在の一般的な顔認識システムは、隠蔽シーンに遭遇する際の重大な性能劣化に悩まされている。
本稿では,これら2つのタスクを協調的に扱うために,マルチタスクのgEnerative mask dEcoupling Face Recognition (MEER) ネットワークを提案する。
まず,マスクと識別情報を分離する新しいマスクデカップリングモジュールを提案する。
論文 参考訳(メタデータ) (2023-11-20T03:23:03Z) - MaskMTL: Attribute prediction in masked facial images with deep
multitask learning [9.91045425400833]
本稿では,マスク付き顔画像から多種多様な特徴を共同で推定する深層マルチタスク学習(MTL)手法を提案する。
提案手法は、他の競合技術よりも性能が優れている。
論文 参考訳(メタデータ) (2022-01-09T13:03:29Z) - Development of a face mask detection pipeline for mask-wearing
monitoring in the era of the COVID-19 pandemic: A modular approach [0.0]
SARS-Cov-2パンデミックの間、マスク着用はウイルスの拡散や収縮を防ぐための効果的な手段となった。
人口のマスク着用率を監視する能力は、ウイルスに対する公衆衛生戦略を決定するのに役立つだろう。
1)顔検出とアライメント,2)顔マスク分類の2つのモジュールからなる2段階の顔マスク検出手法を提案する。
論文 参考訳(メタデータ) (2021-12-30T12:32:33Z) - Mask-invariant Face Recognition through Template-level Knowledge
Distillation [3.727773051465455]
マスクは従来の顔認識システムの性能に影響を与える。
マスク不変顔認識ソリューション(MaskInv)を提案する。
蒸留された知識に加えて、学生ネットワークは、マージンベースのアイデンティティ分類損失による追加ガイダンスの恩恵を受ける。
論文 参考訳(メタデータ) (2021-12-10T16:19:28Z) - MLFW: A Database for Face Recognition on Masked Faces [56.441078419992046]
Masked LFW (MLFW) は、マスクのない顔からマスクされた顔を自動的に生成するツールである。
SOTAモデルの認識精度は、元の画像の精度と比較して、MLFWデータベース上で5%-16%低下する。
論文 参考訳(メタデータ) (2021-09-13T09:30:10Z) - A realistic approach to generate masked faces applied on two novel
masked face recognition data sets [14.130698536174767]
本稿では,マスクのない顔を含むデータセットを合成マスクを作成し,元の画像の顔に重ね合わせることによって拡張する手法を提案する。
CASIA-WebFaceデータセットの445,446 (90%) のマスクと,CelebAデータセットの196,254 (96.8%) のマスクを生成した。
本手法は, 被験者に対して, 他の方法やデータセットと定性的に比較するように依頼することで, 顔にオーバーレイしたマスクのより現実的なトレーニング例を生成する。
論文 参考訳(メタデータ) (2021-09-03T22:33:55Z) - End2End Occluded Face Recognition by Masking Corrupted Features [82.27588990277192]
最先端の一般的な顔認識モデルは、隠蔽された顔画像に対してうまく一般化しない。
本稿では,1つのエンドツーエンドのディープニューラルネットワークに基づいて,オクルージョンに頑健な新しい顔認識手法を提案する。
我々のアプローチは、深い畳み込みニューラルネットワークから破損した特徴を発見し、動的に学習されたマスクによってそれらをきれいにする。
論文 参考訳(メタデータ) (2021-08-21T09:08:41Z) - Indian Masked Faces in the Wild Dataset [86.79402670904338]
本研究では,ポーズ,照明,解像度,被検者の着用するマスクの多様さを特徴とする,IMFWデータセットを新たに提案する。
また,提案したIMFWデータセットにおいて,既存の顔認識モデルの性能をベンチマークした。
論文 参考訳(メタデータ) (2021-06-17T17:23:54Z) - Multi-Dataset Benchmarks for Masked Identification using Contrastive
Representation Learning [0.0]
新型コロナウイルスのパンデミックは世界中で受け入れられた基準を大きく変えた。
パスポート、運転免許証、国籍カードなどの公式文書には、完全な顔画像が登録されている。
空港やセキュリティチェックポイントでは、マスクの取り外しを依頼するのではなく、識別文書の未マスク画像とマスク付き人物とを一致させる方が安全である。
本稿では,マスクとマスクのない顔マッチングに特化した,視覚表現学習に基づく事前学習ワークフローを提案する。
論文 参考訳(メタデータ) (2021-06-10T08:58:10Z) - Image Inpainting by End-to-End Cascaded Refinement with Mask Awareness [66.55719330810547]
任意の欠落領域を塗りつぶすことは、様々なマスクされた領域で有効な特徴を学ぶことは非自明だから難しい。
符号化フェーズにおける欠落領域のマルチスケール特徴を学習する新しいマスク対応インペイントソリューションを提案する。
私たちのフレームワークは、3つの公開データセットに関する広範な実験を通じて定量的および定性的に検証されます。
論文 参考訳(メタデータ) (2021-04-28T13:17:47Z) - Contrastive Context-Aware Learning for 3D High-Fidelity Mask Face
Presentation Attack Detection [103.7264459186552]
顔認識システムには、顔提示攻撃検出(PAD)が不可欠である。
ほとんどの既存の3DマスクPADベンチマークにはいくつかの欠点があります。
現実世界のアプリケーションとのギャップを埋めるために、大規模なハイファイアリティマスクデータセットを紹介します。
論文 参考訳(メタデータ) (2021-04-13T12:48:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。