Table Tennis Stroke Recognition Using Two-Dimensional Human Pose
Estimation
- URL: http://arxiv.org/abs/2104.09907v1
- Date: Tue, 20 Apr 2021 11:32:43 GMT
- Title: Table Tennis Stroke Recognition Using Two-Dimensional Human Pose
Estimation
- Authors: Kaustubh Milind Kulkarni and Sucheth Shenoy
- Abstract summary: We introduce a novel method for collecting table tennis video data and perform stroke detection and classification.
A diverse dataset containing video data of 11 basic strokes obtained from 14 professional table tennis players has been collected.
A temporal convolutional neural network model developed using 2D pose estimation performs multiclass classification of these 11 table tennis strokes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce a novel method for collecting table tennis video data and
perform stroke detection and classification. A diverse dataset containing video
data of 11 basic strokes obtained from 14 professional table tennis players,
summing up to a total of 22111 videos has been collected using the proposed
setup. The temporal convolutional neural network model developed using 2D pose
estimation performs multiclass classification of these 11 table tennis strokes
with a validation accuracy of 99.37%. Moreover, the neural network generalizes
well over the data of a player excluded from the training and validation
dataset, classifying the fresh strokes with an overall best accuracy of 98.72%.
Various model architectures using machine learning and deep learning based
approaches have been trained for stroke recognition and their performances have
been compared and benchmarked. Inferences such as performance monitoring and
stroke comparison of the players using the model have been discussed.
Therefore, we are contributing to the development of a computer vision based
sports analytics system for the sport of table tennis that focuses on the
previously unexploited aspect of the sport i.e., a player's strokes, which is
extremely insightful for performance improvement.
Related papers
- Classification of Tennis Actions Using Deep Learning [0.0]
We investigate the potential and the challenges of using deep learning to classify tennis actions.
Three models of different size were trained and evaluated on the academic tennis dataset THETIS.
The best models achieve a generalization accuracy of 74 %, demonstrating a good performance for tennis action classification.
arXiv Detail & Related papers (2024-02-04T15:48:20Z) - Design of Recognition and Evaluation System for Table Tennis Players'
Motor Skills Based on Artificial Intelligence [3.4701250324316146]
This paper improves wearable devices of table tennis sport, and realizes the pattern recognition and evaluation of table tennis players' motor skills through artificial intelligence.
A sliding window is made to divide the collected motion data into a characteristic database of six table tennis benchmark movements.
The hierarchical evaluation system of motor skills is established with the loss functions of different evaluation indexes.
arXiv Detail & Related papers (2023-09-04T14:58:56Z) - Towards Active Learning for Action Spotting in Association Football
Videos [59.84375958757395]
Analyzing football videos is challenging and requires identifying subtle and diverse-temporal patterns.
Current algorithms face significant challenges when learning from limited annotated data.
We propose an active learning framework that selects the most informative video samples to be annotated next.
arXiv Detail & Related papers (2023-04-09T11:50:41Z) - Supervised Learning for Table Tennis Match Prediction [2.7835697868135902]
This paper proposes the use of machine learning to predict the outcome of table tennis single matches.
We use player and match statistics as features and evaluate their relative importance in an ablation study.
The results can serve as a baseline for future table tennis prediction models, and can feed back to prediction research in similar ball sports.
arXiv Detail & Related papers (2023-03-28T17:42:13Z) - Table Tennis Stroke Detection and Recognition Using Ball Trajectory Data [5.735035463793008]
A single camera setup positioned in the umpire's view has been employed to procure a dataset consisting of six stroke classes executed by four professional table tennis players.
Ball tracking using YOLOv4, a traditional object detection model, and TrackNetv2, a temporal heatmap based model, have been implemented on our dataset.
A mathematical approach developed to extract temporal boundaries of strokes using the ball trajectory data yielded a total of 2023 valid strokes.
The temporal convolutional network developed performed stroke recognition on completely unseen data with an accuracy of 87.155%.
arXiv Detail & Related papers (2023-02-19T19:13:24Z) - A Graph-Based Method for Soccer Action Spotting Using Unsupervised
Player Classification [75.93186954061943]
Action spotting involves understanding the dynamics of the game, the complexity of events, and the variation of video sequences.
In this work, we focus on the former by (a) identifying and representing the players, referees, and goalkeepers as nodes in a graph, and by (b) modeling their temporal interactions as sequences of graphs.
For the player identification task, our method obtains an overall performance of 57.83% average-mAP by combining it with other modalities.
arXiv Detail & Related papers (2022-11-22T15:23:53Z) - P2ANet: A Dataset and Benchmark for Dense Action Detection from Table Tennis Match Broadcasting Videos [64.57435509822416]
This work consists of 2,721 video clips collected from the broadcasting videos of professional table tennis matches in World Table Tennis Championships and Olympiads.
We formulate two sets of action detection problems -- emphaction localization and emphaction recognition.
The results confirm that TheName is still a challenging task and can be used as a special benchmark for dense action detection from videos.
arXiv Detail & Related papers (2022-07-26T08:34:17Z) - Revisiting Classifier: Transferring Vision-Language Models for Video
Recognition [102.93524173258487]
Transferring knowledge from task-agnostic pre-trained deep models for downstream tasks is an important topic in computer vision research.
In this study, we focus on transferring knowledge for video classification tasks.
We utilize the well-pretrained language model to generate good semantic target for efficient transferring learning.
arXiv Detail & Related papers (2022-07-04T10:00:47Z) - CONVIQT: Contrastive Video Quality Estimator [63.749184706461826]
Perceptual video quality assessment (VQA) is an integral component of many streaming and video sharing platforms.
Here we consider the problem of learning perceptually relevant video quality representations in a self-supervised manner.
Our results indicate that compelling representations with perceptual bearing can be obtained using self-supervised learning.
arXiv Detail & Related papers (2022-06-29T15:22:01Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
This work proposes a novel skeleton-based human action recognition model with sparse attention on the spatial dimension and segmented linear attention on the temporal dimension of data.
Experiments show that our model can achieve comparable performance while utilizing much less trainable parameters and achieve high speed in training and inference.
arXiv Detail & Related papers (2021-07-15T02:53:11Z) - TTNet: Real-time temporal and spatial video analysis of table tennis [5.156484100374058]
We present a neural network aimed at real-time processing of high-resolution table tennis videos.
This approach gives core information for reasoning score updates by an auto-referee system.
We publish a multi-task dataset OpenTTGames with videos of table tennis games in 120 fps labeled with events.
arXiv Detail & Related papers (2020-04-21T11:57:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.