Table Tennis Stroke Detection and Recognition Using Ball Trajectory Data
- URL: http://arxiv.org/abs/2302.09657v1
- Date: Sun, 19 Feb 2023 19:13:24 GMT
- Title: Table Tennis Stroke Detection and Recognition Using Ball Trajectory Data
- Authors: Kaustubh Milind Kulkarni, Rohan S Jamadagni, Jeffrey Aaron Paul,
Sucheth Shenoy
- Abstract summary: A single camera setup positioned in the umpire's view has been employed to procure a dataset consisting of six stroke classes executed by four professional table tennis players.
Ball tracking using YOLOv4, a traditional object detection model, and TrackNetv2, a temporal heatmap based model, have been implemented on our dataset.
A mathematical approach developed to extract temporal boundaries of strokes using the ball trajectory data yielded a total of 2023 valid strokes.
The temporal convolutional network developed performed stroke recognition on completely unseen data with an accuracy of 87.155%.
- Score: 5.735035463793008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, the novel task of detecting and classifying table tennis
strokes solely using the ball trajectory has been explored. A single camera
setup positioned in the umpire's view has been employed to procure a dataset
consisting of six stroke classes executed by four professional table tennis
players. Ball tracking using YOLOv4, a traditional object detection model, and
TrackNetv2, a temporal heatmap based model, have been implemented on our
dataset and their performances have been benchmarked. A mathematical approach
developed to extract temporal boundaries of strokes using the ball trajectory
data yielded a total of 2023 valid strokes in our dataset, while also detecting
services and missed strokes successfully. The temporal convolutional network
developed performed stroke recognition on completely unseen data with an
accuracy of 87.155%. Several machine learning and deep learning based model
architectures have been trained for stroke recognition using ball trajectory
input and benchmarked based on their performances. While stroke recognition in
the field of table tennis has been extensively explored based on human action
recognition using video data focused on the player's actions, the use of ball
trajectory data for the same is an unexplored characteristic of the sport.
Hence, the motivation behind the work is to demonstrate that meaningful
inferences such as stroke detection and recognition can be drawn using minimal
input information.
Related papers
- Temporal Correlation Meets Embedding: Towards a 2nd Generation of JDE-based Real-Time Multi-Object Tracking [52.04679257903805]
Joint Detection and Embedding (JDE) trackers have demonstrated excellent performance in Multi-Object Tracking (MOT) tasks.
Our tracker, named TCBTrack, achieves state-of-the-art performance on multiple public benchmarks.
arXiv Detail & Related papers (2024-07-19T07:48:45Z) - Classification of Tennis Actions Using Deep Learning [0.0]
We investigate the potential and the challenges of using deep learning to classify tennis actions.
Three models of different size were trained and evaluated on the academic tennis dataset THETIS.
The best models achieve a generalization accuracy of 74 %, demonstrating a good performance for tennis action classification.
arXiv Detail & Related papers (2024-02-04T15:48:20Z) - ShuttleSet: A Human-Annotated Stroke-Level Singles Dataset for Badminton
Tactical Analysis [5.609957071296952]
We present ShuttleSet, the largest publicly-available badminton singles dataset with annotated stroke-level records.
It contains 104 sets, 3,685 rallies, and 36,492 strokes in 44 matches between 2018 and 2021 with 27 top-ranking men's singles and women's singles players.
ShuttleSet is manually annotated with a computer-aided labeling tool to increase the labeling efficiency and effectiveness of selecting the shot type.
arXiv Detail & Related papers (2023-06-08T05:41:42Z) - P2ANet: A Dataset and Benchmark for Dense Action Detection from Table Tennis Match Broadcasting Videos [64.57435509822416]
This work consists of 2,721 video clips collected from the broadcasting videos of professional table tennis matches in World Table Tennis Championships and Olympiads.
We formulate two sets of action detection problems -- emphaction localization and emphaction recognition.
The results confirm that TheName is still a challenging task and can be used as a special benchmark for dense action detection from videos.
arXiv Detail & Related papers (2022-07-26T08:34:17Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
We propose a self-supervised approach for pre-training deep neural networks in remote sensing.
By exploiting the correspondence between geo-tagged audio recordings and remote sensing, this is done in a completely label-free manner.
We show that our approach outperforms existing pre-training strategies for remote sensing imagery.
arXiv Detail & Related papers (2021-08-02T07:50:50Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - Table Tennis Stroke Recognition Using Two-Dimensional Human Pose
Estimation [0.0]
We introduce a novel method for collecting table tennis video data and perform stroke detection and classification.
A diverse dataset containing video data of 11 basic strokes obtained from 14 professional table tennis players has been collected.
A temporal convolutional neural network model developed using 2D pose estimation performs multiclass classification of these 11 table tennis strokes.
arXiv Detail & Related papers (2021-04-20T11:32:43Z) - AutoTrajectory: Label-free Trajectory Extraction and Prediction from
Videos using Dynamic Points [92.91569287889203]
We present a novel, label-free algorithm, AutoTrajectory, for trajectory extraction and prediction.
To better capture the moving objects in videos, we introduce dynamic points.
We aggregate dynamic points to instance points, which stand for moving objects such as pedestrians in videos.
arXiv Detail & Related papers (2020-07-11T08:43:34Z) - Group Activity Detection from Trajectory and Video Data in Soccer [16.134402513773463]
Group activity detection in soccer can be done by using either video data or player and ball trajectory data.
In current soccer datasets, activities are labelled as atomic events without a duration.
Our results show that most events can be detected using either vision or trajectory-based approaches with a temporal resolution of less than 0.5 seconds.
arXiv Detail & Related papers (2020-04-21T21:11:30Z) - TTNet: Real-time temporal and spatial video analysis of table tennis [5.156484100374058]
We present a neural network aimed at real-time processing of high-resolution table tennis videos.
This approach gives core information for reasoning score updates by an auto-referee system.
We publish a multi-task dataset OpenTTGames with videos of table tennis games in 120 fps labeled with events.
arXiv Detail & Related papers (2020-04-21T11:57:51Z) - ArTIST: Autoregressive Trajectory Inpainting and Scoring for Tracking [80.02322563402758]
One of the core components in online multiple object tracking (MOT) frameworks is associating new detections with existing tracklets.
We introduce a probabilistic autoregressive generative model to score tracklet proposals by directly measuring the likelihood that a tracklet represents natural motion.
arXiv Detail & Related papers (2020-04-16T06:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.