Contrastive Learning for Sports Video: Unsupervised Player
Classification
- URL: http://arxiv.org/abs/2104.10068v1
- Date: Thu, 15 Apr 2021 20:24:02 GMT
- Title: Contrastive Learning for Sports Video: Unsupervised Player
Classification
- Authors: Maria Koshkina, Hemanth Pidaparthy, James H. Elder
- Abstract summary: We adopt a contrastive learning approach in which an embedding network learns to maximize the distance between representations of players on different teams.
We show that our contrastive method achieves 94% accuracy after unsupervised training on only a single frame, with accuracy rising to 97% within 500 frames (17 seconds of game time)
- Score: 2.3633885460047765
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We address the problem of unsupervised classification of players in a team
sport according to their team affiliation, when jersey colours and design are
not known a priori. We adopt a contrastive learning approach in which an
embedding network learns to maximize the distance between representations of
players on different teams relative to players on the same team, in a purely
unsupervised fashion, without any labelled data. We evaluate the approach using
a new hockey dataset and find that it outperforms prior unsupervised approaches
by a substantial margin, particularly for real-time application when only a
small number of frames are available for unsupervised learning before team
assignments must be made. Remarkably, we show that our contrastive method
achieves 94% accuracy after unsupervised training on only a single frame, with
accuracy rising to 97% within 500 frames (17 seconds of game time). We further
demonstrate how accurate team classification allows accurate team-conditional
heat maps of player positioning to be computed.
Related papers
- Estimation of control area in badminton doubles with pose information
from top and back view drone videos [11.679451300997016]
We present the first annotated drone dataset from top and back views in badminton doubles.
We propose a framework to estimate the control area probability map, which can be used to evaluate teamwork performance.
arXiv Detail & Related papers (2023-05-07T11:18:39Z) - CLIP-ReIdent: Contrastive Training for Player Re-Identification [0.0]
We investigate whether it is possible to transfer the out-standing zero-shot performance of pre-trained CLIP models to the domain of player re-identification.
Unlike previous work, our approach is entirely class-agnostic and benefits from large-scale pre-training.
arXiv Detail & Related papers (2023-03-21T13:55:27Z) - A Graph-Based Method for Soccer Action Spotting Using Unsupervised
Player Classification [75.93186954061943]
Action spotting involves understanding the dynamics of the game, the complexity of events, and the variation of video sequences.
In this work, we focus on the former by (a) identifying and representing the players, referees, and goalkeepers as nodes in a graph, and by (b) modeling their temporal interactions as sequences of graphs.
For the player identification task, our method obtains an overall performance of 57.83% average-mAP by combining it with other modalities.
arXiv Detail & Related papers (2022-11-22T15:23:53Z) - Group Activity Recognition in Basketball Tracking Data -- Neural
Embeddings in Team Sports (NETS) [10.259254824702554]
We propose a novel deep learning approach for group activity recognition (GAR) in team sports called NETS.
We used a large tracking data set from 632 NBA games to evaluate our approach.
The results show that NETS is capable of learning group activities with high accuracy, and that self- and weak-supervised training in NETS have a positive impact on GAR accuracy.
arXiv Detail & Related papers (2022-08-31T01:22:38Z) - Collusion Detection in Team-Based Multiplayer Games [57.153233321515984]
We propose a system that detects colluding behaviors in team-based multiplayer games.
The proposed method analyzes the players' social relationships paired with their in-game behavioral patterns.
We then automate the detection using Isolation Forest, an unsupervised learning technique specialized in highlighting outliers.
arXiv Detail & Related papers (2022-03-10T02:37:39Z) - Unsupervised Visual Representation Learning by Tracking Patches in Video [88.56860674483752]
We propose to use tracking as a proxy task for a computer vision system to learn the visual representations.
Modelled on the Catch game played by the children, we design a Catch-the-Patch (CtP) game for a 3D-CNN model to learn visual representations.
arXiv Detail & Related papers (2021-05-06T09:46:42Z) - My Team Will Go On: Differentiating High and Low Viability Teams through
Team Interaction [17.729317295204368]
We train a viability classification model over a dataset of 669 10-minute text conversations of online teams.
We find that a lasso regression model achieves an accuracy of.74--.92 AUC ROC under different thresholds of classifying viability scores.
arXiv Detail & Related papers (2020-10-14T21:33:36Z) - Faster Algorithms for Optimal Ex-Ante Coordinated Collusive Strategies
in Extensive-Form Zero-Sum Games [123.76716667704625]
We focus on the problem of finding an optimal strategy for a team of two players that faces an opponent in an imperfect-information zero-sum extensive-form game.
In that setting, it is known that the best the team can do is sample a profile of potentially randomized strategies (one per player) from a joint (a.k.a. correlated) probability distribution at the beginning of the game.
We provide an algorithm that computes such an optimal distribution by only using profiles where only one of the team members gets to randomize in each profile.
arXiv Detail & Related papers (2020-09-21T17:51:57Z) - Unsupervised Deep Representation Learning for Real-Time Tracking [137.69689503237893]
We propose an unsupervised learning method for visual tracking.
The motivation of our unsupervised learning is that a robust tracker should be effective in bidirectional tracking.
We build our framework on a Siamese correlation filter network, and propose a multi-frame validation scheme and a cost-sensitive loss to facilitate unsupervised learning.
arXiv Detail & Related papers (2020-07-22T08:23:12Z) - Competitive Balance in Team Sports Games [8.321949054700086]
We show that using final score difference provides yet a better prediction metric for competitive balance.
We also show that a linear model trained on a carefully selected set of team and individual features achieves almost the performance of the more powerful neural network model.
arXiv Detail & Related papers (2020-06-24T14:19:07Z) - Don't Wait, Just Weight: Improving Unsupervised Representations by
Learning Goal-Driven Instance Weights [92.16372657233394]
Self-supervised learning techniques can boost performance by learning useful representations from unlabelled data.
We show that by learning Bayesian instance weights for the unlabelled data, we can improve the downstream classification accuracy.
Our method, BetaDataWeighter is evaluated using the popular self-supervised rotation prediction task on STL-10 and Visual Decathlon.
arXiv Detail & Related papers (2020-06-22T15:59:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.