論文の概要: Enhancing Cognitive Models of Emotions with Representation Learning
- arxiv url: http://arxiv.org/abs/2104.10117v1
- Date: Tue, 20 Apr 2021 16:55:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-21 16:38:06.039195
- Title: Enhancing Cognitive Models of Emotions with Representation Learning
- Title(参考訳): 表現学習による感情の認知モデルの拡張
- Authors: Yuting Guo and Jinho Choi
- Abstract要約: 本稿では,きめ細かな感情の埋め込み表現を生成するための,新しいディープラーニングフレームワークを提案する。
本フレームワークは,コンテキスト型埋め込みエンコーダとマルチヘッド探索モデルを統合する。
本モデルは共感対話データセット上で評価され,32種類の感情を分類する最新結果を示す。
- 参考スコア(独自算出の注目度): 58.2386408470585
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel deep learning-based framework to generate embedding
representations of fine-grained emotions that can be used to computationally
describe psychological models of emotions. Our framework integrates a
contextualized embedding encoder with a multi-head probing model that enables
to interpret dynamically learned representations optimized for an emotion
classification task. Our model is evaluated on the Empathetic Dialogue dataset
and shows the state-of-the-art result for classifying 32 emotions. Our layer
analysis can derive an emotion graph to depict hierarchical relations among the
emotions. Our emotion representations can be used to generate an emotion wheel
directly comparable to the one from Plutchik's\LN model, and also augment the
values of missing emotions in the PAD emotional state model.
- Abstract(参考訳): 本稿では,感情の心理モデルを記述するために,きめ細かな感情の埋め込み表現を生成するための,新しい深層学習ベースのフレームワークを提案する。
本フレームワークは,感情分類タスクに最適化された動的学習表現の解釈を可能にするマルチヘッド探索モデルと,コンテキスト型埋め込みエンコーダを統合した。
本モデルは共感対話データセット上で評価され,32種類の感情を分類する最新結果を示す。
階層分析は感情間の階層的関係を表現する感情グラフを導出することができる。
私たちの感情表現は、plutchikのs\lnモデルに匹敵する感情ホイールを生成するのに使用できます。
関連論文リスト
- Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
会話音声合成(CSS)は,会話環境の中で適切な韻律と感情のインフレクションで発話を正確に表現することを目的としている。
データ不足の問題に対処するため、私たちはカテゴリと強度の点で感情的なラベルを慎重に作成します。
我々のモデルは感情の理解と表現においてベースラインモデルよりも優れています。
論文 参考訳(メタデータ) (2023-12-19T08:47:50Z) - Computer Vision Estimation of Emotion Reaction Intensity in the Wild [1.5481864635049696]
本稿では,新たに導入された感情反応強度(ERI)推定課題について述べる。
視覚領域で訓練された4つのディープニューラルネットワークと、感情反応強度を予測するために視覚的特徴と音声的特徴の両方で訓練されたマルチモーダルモデルを開発した。
論文 参考訳(メタデータ) (2023-03-19T19:09:41Z) - EmoCaps: Emotion Capsule based Model for Conversational Emotion
Recognition [2.359022633145476]
会話中の感情認識(ERC)は、話者の状態を分析し、会話中の感情を識別することを目的としている。
ERCにおける最近の研究は文脈モデリングに焦点を当てているが、文脈的感情傾向の表現は無視されている。
Emoformerと呼ばれる新しい構造は、異なるモーダルから複数のモーダル感情ベクトルを抽出し、それらを文ベクトルで融合して感情カプセルにする。
論文 参考訳(メタデータ) (2022-03-25T08:42:57Z) - Contrast and Generation Make BART a Good Dialogue Emotion Recognizer [38.18867570050835]
対話型感情認識において、話者依存との長期的文脈的感情関係が重要な役割を担っている。
教師付きコントラスト学習を用いて、異なる感情を相互に排他的に区別し、類似した感情をよりよく識別する。
我々は、文脈情報を扱うモデルの能力を高めるために補助応答生成タスクを利用する。
論文 参考訳(メタデータ) (2021-12-21T13:38:00Z) - SOLVER: Scene-Object Interrelated Visual Emotion Reasoning Network [83.27291945217424]
画像から感情を予測するために,SOLVER(Scene-Object Interrelated Visual Emotion Reasoning Network)を提案する。
異なるオブジェクト間の感情関係を掘り下げるために、まずセマンティックな概念と視覚的特徴に基づいて感情グラフを構築します。
また、シーンとオブジェクトを統合するScene-Object Fusion Moduleを設計し、シーンの特徴を利用して、提案したシーンベースのアテンションメカニズムでオブジェクトの特徴の融合プロセスを導出する。
論文 参考訳(メタデータ) (2021-10-24T02:41:41Z) - A Circular-Structured Representation for Visual Emotion Distribution
Learning [82.89776298753661]
視覚的感情分布学習に先立つ知識を活用するために,身近な円形構造表現を提案する。
具体的には、まず感情圏を構築し、その内にある感情状態を統一する。
提案した感情圏では、各感情分布は3つの属性で定義される感情ベクトルで表される。
論文 参考訳(メタデータ) (2021-06-23T14:53:27Z) - Modality-Transferable Emotion Embeddings for Low-Resource Multimodal
Emotion Recognition [55.44502358463217]
本稿では、上記の問題に対処するため、感情を埋め込んだモダリティ変換可能なモデルを提案する。
我々のモデルは感情カテゴリーのほとんどで最先端のパフォーマンスを達成する。
私たちのモデルは、目に見えない感情に対するゼロショットと少数ショットのシナリオにおいて、既存のベースラインよりも優れています。
論文 参考訳(メタデータ) (2020-09-21T06:10:39Z) - Facial Expression Editing with Continuous Emotion Labels [76.36392210528105]
深層生成モデルは、自動表情編集の分野で素晴らしい成果を上げている。
連続した2次元の感情ラベルに従って顔画像の表情を操作できるモデルを提案する。
論文 参考訳(メタデータ) (2020-06-22T13:03:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。