Phase Transition Adaptation
- URL: http://arxiv.org/abs/2104.10132v1
- Date: Tue, 20 Apr 2021 17:18:34 GMT
- Title: Phase Transition Adaptation
- Authors: Claudio Gallicchio, Alessio Micheli, Luca Silvestri
- Abstract summary: We propose an extension of the original approach, a local unsupervised learning mechanism we call Phase Transition Adaptation.
We show experimentally that our approach consistently achieves its purpose over several datasets.
- Score: 14.034816857287044
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Artificial Recurrent Neural Networks are a powerful information processing
abstraction, and Reservoir Computing provides an efficient strategy to build
robust implementations by projecting external inputs into high dimensional
dynamical system trajectories. In this paper, we propose an extension of the
original approach, a local unsupervised learning mechanism we call Phase
Transition Adaptation, designed to drive the system dynamics towards the `edge
of stability'. Here, the complex behavior exhibited by the system elicits an
enhancement in its overall computational capacity. We show experimentally that
our approach consistently achieves its purpose over several datasets.
Related papers
- Optimal Transport-Based Displacement Interpolation with Data Augmentation for Reduced Order Modeling of Nonlinear Dynamical Systems [0.0]
We present a novel reduced-order Model (ROM) that exploits optimal transport theory and displacement to enhance the representation of nonlinear dynamics in complex systems.
We show improved accuracy and efficiency in predicting complex system behaviors, indicating the potential of this approach for a wide range of applications in computational physics and engineering.
arXiv Detail & Related papers (2024-11-13T16:29:33Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Unifying Dimensions: A Linear Adaptive Approach to Lightweight Image Super-Resolution [6.857919231112562]
Window-based transformers have demonstrated outstanding performance in super-resolution tasks.
They exhibit higher computational complexity and inference latency than convolutional neural networks.
We construct a convolution-based Transformer framework named the linear adaptive mixer network (LAMNet)
arXiv Detail & Related papers (2024-09-26T07:24:09Z) - Adaptive Anomaly Detection in Network Flows with Low-Rank Tensor Decompositions and Deep Unrolling [9.20186865054847]
Anomaly detection (AD) is increasingly recognized as a key component for ensuring the resilience of future communication systems.
This work considers AD in network flows using incomplete measurements.
We propose a novel block-successive convex approximation algorithm based on a regularized model-fitting objective.
Inspired by Bayesian approaches, we extend the model architecture to perform online adaptation to per-flow and per-time-step statistics.
arXiv Detail & Related papers (2024-09-17T19:59:57Z) - Enhancing Tabular Data Optimization with a Flexible Graph-based Reinforced Exploration Strategy [16.782884097690882]
Current frameworks for automated feature transformation rely on iterative sequence generation tasks.
Three cascading agents iteratively select nodes and idea mathematical operations to generate new transformation states.
This strategy leverages the inherent properties of the graph structure, allowing for the preservation and reuse of valuable transformations.
arXiv Detail & Related papers (2024-06-11T16:10:37Z) - Hallmarks of Optimization Trajectories in Neural Networks: Directional Exploration and Redundancy [75.15685966213832]
We analyze the rich directional structure of optimization trajectories represented by their pointwise parameters.
We show that training only scalar batchnorm parameters some while into training matches the performance of training the entire network.
arXiv Detail & Related papers (2024-03-12T07:32:47Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
We focus on extending spatial aggregation capability and propose a dynamic kernel-based transform coding.
The proposed adaptive aggregation generates kernel offsets to capture valid information in the content-conditioned range to help transform.
Experimental results demonstrate that our method achieves superior rate-distortion performance on three benchmarks compared to the state-of-the-art learning-based methods.
arXiv Detail & Related papers (2023-08-17T01:34:51Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Resource-Efficient Invariant Networks: Exponential Gains by Unrolled
Optimization [8.37077056358265]
We propose a new computational primitive for building invariant networks based instead on optimization.
We provide empirical and theoretical corroboration of the efficiency gains and soundness of our proposed method.
We demonstrate its utility in constructing an efficient invariant network for a simple hierarchical object detection task.
arXiv Detail & Related papers (2022-03-09T19:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.