論文の概要: Bias-Aware Loss for Training Image and Speech Quality Prediction Models
from Multiple Datasets
- arxiv url: http://arxiv.org/abs/2104.10217v1
- Date: Tue, 20 Apr 2021 19:20:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-22 14:11:37.100166
- Title: Bias-Aware Loss for Training Image and Speech Quality Prediction Models
from Multiple Datasets
- Title(参考訳): 複数のデータセットからの画像と音声品質予測モデルのバイアス認識損失
- Authors: Gabriel Mittag, Saman Zadtootaghaj, Thilo Michael, Babak Naderi,
Sebastian M\"oller
- Abstract要約: 学習中の各データセットのバイアスを線形関数で推定するバイアス認識損失関数を提案する。
合成および主観的画像および音声品質データセットにおける品質予測モデルの訓練と検証により,提案手法の有効性を実証する。
- 参考スコア(独自算出の注目度): 13.132388683797503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ground truth used for training image, video, or speech quality prediction
models is based on the Mean Opinion Scores (MOS) obtained from subjective
experiments. Usually, it is necessary to conduct multiple experiments, mostly
with different test participants, to obtain enough data to train quality models
based on machine learning. Each of these experiments is subject to an
experiment-specific bias, where the rating of the same file may be
substantially different in two experiments (e.g. depending on the overall
quality distribution). These different ratings for the same distortion levels
confuse neural networks during training and lead to lower performance. To
overcome this problem, we propose a bias-aware loss function that estimates
each dataset's biases during training with a linear function and considers it
while optimising the network weights. We prove the efficiency of the proposed
method by training and validating quality prediction models on synthetic and
subjective image and speech quality datasets.
- Abstract(参考訳): 画像、映像、音声品質予測モデルの訓練に用いられる基礎的真実は、主観的実験から得られた平均世論スコア(mos)に基づいている。
通常、機械学習に基づいて品質モデルをトレーニングするのに十分なデータを得るためには、主に異なるテスト参加者で複数の実験を行う必要がある。
これらの実験はそれぞれ実験固有のバイアスを受けており、同じファイルの格付けは2つの実験(例えば)で大きく異なる可能性がある。
全体的な品質分布による)。
同じ歪みレベルのこれらの異なる評価は、トレーニング中にニューラルネットワークを混乱させ、パフォーマンスを低下させる。
そこで本研究では,学習中の各データセットのバイアスを線形関数で推定し,ネットワーク重みを最適化しながら検討するバイアス認識損失関数を提案する。
合成および主観的画像および音声品質データセットにおける品質予測モデルの訓練と検証により,提案手法の有効性を実証する。
関連論文リスト
- Diffusion-based Neural Network Weights Generation [85.6725307453325]
データセット条件付き事前学習重み抽出による効率よく適応的な伝達学習手法を提案する。
具体的には、ニューラルネットワークの重みを再構築できる変分オートエンコーダを備えた潜時拡散モデルを用いる。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - The Mirrored Influence Hypothesis: Efficient Data Influence Estimation by Harnessing Forward Passes [30.30769701138665]
我々は、訓練データとテストデータの間の相互影響を浮き彫りにして、ミラーレッド影響仮説を導入し、探求する。
具体的には、テスト予測に対するトレーニングデータの影響を評価することは、等価だが逆問題として再定義することができることを示唆している。
トレーニングポイント毎に前方パスとペアを組むことで,特定のテストサンプルの勾配を計算し,トレーニングデータの影響を推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-14T03:43:05Z) - Understanding and Mitigating the Label Noise in Pre-training on
Downstream Tasks [91.15120211190519]
本稿では、事前学習データセットにおけるノイズの性質を理解し、下流タスクへの影響を軽減することを目的とする。
雑音の悪影響を軽減するために特徴空間に適応する軽量ブラックボックスチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2023-09-29T06:18:15Z) - Effective Robustness against Natural Distribution Shifts for Models with
Different Training Data [113.21868839569]
効果的ロバスト性」は、分配内(ID)性能から予測できる以上の余分な分配外ロバスト性を測定する。
異なるデータに基づいてトレーニングされたモデルの有効ロバスト性を評価・比較するための新しい評価指標を提案する。
論文 参考訳(メタデータ) (2023-02-02T19:28:41Z) - CONVIQT: Contrastive Video Quality Estimator [63.749184706461826]
知覚ビデオ品質評価(VQA)は、多くのストリーミングおよびビデオ共有プラットフォームにおいて不可欠な要素である。
本稿では,視覚的に関連のある映像品質表現を自己指導的に学習する問題について考察する。
本研究は, 自己教師型学習を用いて, 知覚力による説得力のある表現が得られることを示す。
論文 参考訳(メタデータ) (2022-06-29T15:22:01Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
本稿では,FAIRIFという2段階の学習アルゴリズムを提案する。
サンプル重みが計算される再重み付きデータセットの損失を最小限に抑える。
FAIRIFは、様々な種類のバイアスに対して、フェアネスとユーティリティのトレードオフを良くしたモデルが得られることを示す。
論文 参考訳(メタデータ) (2022-01-15T05:14:48Z) - Robust Fairness-aware Learning Under Sample Selection Bias [17.09665420515772]
サンプル選択バイアス下での頑健で公正な学習のための枠組みを提案する。
テストデータが利用可能で、利用できない場合に、サンプル選択バイアスを処理する2つのアルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-05-24T23:23:36Z) - Reinforced Curriculum Learning on Pre-trained Neural Machine Translation
Models [20.976165305749777]
我々は,既存のトレーニングセットから影響力のあるデータサンプルを再選択することで,事前学習したNMTモデルを改善するカリキュラムを学習する。
本稿では,決定論的アクタ批判に基づくデータ選択フレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-13T03:40:44Z) - Fine-Tuning Pretrained Language Models: Weight Initializations, Data
Orders, and Early Stopping [62.78338049381917]
教師付き下流タスクのための微調整済み文脈単語埋め込みモデルは、自然言語処理において一般的なものとなっている。
GLUEベンチマークから得られた4つのデータセットを実験し、無作為な種だけを変えながら、それぞれに数百回微調整されたBERTを実験した。
これまでに報告した結果と比較すると,性能が大幅に向上し,微調整試行回数の関数としてベストファウンドモデルの性能がどう変化するかが定量化される。
論文 参考訳(メタデータ) (2020-02-15T02:40:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。