論文の概要: Improving the Accuracy of Early Exits in Multi-Exit Architectures via
Curriculum Learning
- arxiv url: http://arxiv.org/abs/2104.10461v1
- Date: Wed, 21 Apr 2021 11:12:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-22 14:33:02.775177
- Title: Improving the Accuracy of Early Exits in Multi-Exit Architectures via
Curriculum Learning
- Title(参考訳): カリキュラム学習による多目的建築における初期出力の精度向上
- Authors: Arian Bakhtiarnia, Qi Zhang and Alexandros Iosifidis
- Abstract要約: マルチエクイットアーキテクチャにより、ディープニューラルネットワークは、正確なコストで厳密な期限に従うために、実行を早期に終了することができる。
カリキュラム学習を活用したマルチエクジットカリキュラム学習という新しい手法を紹介します。
本手法は, 標準訓練手法と比較して, 早期終了の精度を一貫して向上させる。
- 参考スコア(独自算出の注目度): 88.17413955380262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deploying deep learning services for time-sensitive and resource-constrained
settings such as IoT using edge computing systems is a challenging task that
requires dynamic adjustment of inference time. Multi-exit architectures allow
deep neural networks to terminate their execution early in order to adhere to
tight deadlines at the cost of accuracy. To mitigate this cost, in this paper
we introduce a novel method called Multi-Exit Curriculum Learning that utilizes
curriculum learning, a training strategy for neural networks that imitates
human learning by sorting the training samples based on their difficulty and
gradually introducing them to the network. Experiments on CIFAR-10 and
CIFAR-100 datasets and various configurations of multi-exit architectures show
that our method consistently improves the accuracy of early exits compared to
the standard training approach.
- Abstract(参考訳): エッジコンピューティングシステムを使用したIoTのような時間に敏感でリソースに制約のある設定のためのディープラーニングサービスをデプロイすることは、推論時間の動的調整を必要とする難しいタスクである。
マルチエクイットアーキテクチャにより、ディープニューラルネットワークは、正確なコストで厳密な期限に従うために、実行を早期に終了することができる。
このコストを軽減するために,ニューラルネットワークのカリキュラム学習を利用するマルチエクイットカリキュラム学習という,学習の難しさに基づいてトレーニングサンプルをソートし,徐々にネットワークに導入することで,人間の学習を模倣するトレーニング戦略を提案する。
CIFAR-10 と CIFAR-100 データセットの実験とマルチエグジットアーキテクチャの様々な構成により,本手法は標準トレーニング手法と比較して早期出口の精度を一貫して向上することが示された。
関連論文リスト
- Continual Learning with Pretrained Backbones by Tuning in the Input
Space [44.97953547553997]
ディープラーニングモデルを非定常環境に適用することの本質的な困難さは、ニューラルネットワークの実際のタスクへの適用性を制限している。
ネットワークの事前学習部分の更新を回避し、通常の分類ヘッドだけでなく、新たに導入した学習可能なパラメータのセットも学習することで、微調整手順をより効果的にするための新しい戦略を提案する。
論文 参考訳(メタデータ) (2023-06-05T15:11:59Z) - Unifying Synergies between Self-supervised Learning and Dynamic
Computation [53.66628188936682]
SSLとDCのパラダイム間の相互作用に関する新しい視点を提示する。
SSL設定において、スクラッチから高密度かつゲートされたサブネットワークを同時に学習することは可能であることを示す。
密集エンコーダとゲートエンコーダの事前学習における共進化は、良好な精度と効率のトレードオフをもたらす。
論文 参考訳(メタデータ) (2023-01-22T17:12:58Z) - Learning Rate Curriculum [75.98230528486401]
ラーニングレートカリキュラム(LeRaC)と呼ばれる新しいカリキュラム学習手法を提案する。
LeRaCは、ニューラルネットワークの各レイヤ毎に異なる学習率を使用して、最初のトレーニングエポックの間、データに依存しないカリキュラムを作成する。
Smoothing(CBS)によるCurriculum(Curriculum)との比較を行った。
論文 参考訳(メタデータ) (2022-05-18T18:57:36Z) - Consistency Training of Multi-exit Architectures for Sensor Data [0.07614628596146598]
本稿では,一貫した出口訓練(Continuous exit training)と呼ばれるマルチエクイットアーキテクチャの堅牢なトレーニングのための,新規かつアーキテクチャに依存しないアプローチを提案する。
弱監督を利用して、モデルの出力を整合性トレーニングと整合させ、ネットワーク内の出口に対してマルチタスク学習方式で二重空間を協調的に最適化する。
論文 参考訳(メタデータ) (2021-09-27T17:11:25Z) - CosSGD: Nonlinear Quantization for Communication-efficient Federated
Learning [62.65937719264881]
フェデレーション学習は、これらのクライアントのローカルデータを中央サーバに転送することなく、クライアント間での学習を促進する。
圧縮勾配降下のための非線形量子化を提案し、フェデレーションラーニングで容易に利用することができる。
本システムは,訓練過程の収束と精度を維持しつつ,通信コストを最大3桁まで削減する。
論文 参考訳(メタデータ) (2020-12-15T12:20:28Z) - Neuromodulated Neural Architectures with Local Error Signals for
Memory-Constrained Online Continual Learning [4.2903672492917755]
我々は,局所学習とニューロ変調を取り入れた,生物学的にインスパイアされた軽量ニューラルネットワークアーキテクチャを開発した。
一つの課題と連続的な学習環境の両方にアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-07-16T07:41:23Z) - Multi-fidelity Neural Architecture Search with Knowledge Distillation [69.09782590880367]
ニューラルアーキテクチャ探索のためのベイズ的多重忠実度法 MF-KD を提案する。
知識蒸留は損失関数に追加され、ネットワークが教師ネットワークを模倣することを強制する用語となる。
このような変化した損失関数を持ついくつかのエポックに対するトレーニングは、ロジスティックな損失を持ついくつかのエポックに対するトレーニングよりも、より優れたニューラルアーキテクチャの選択につながることを示す。
論文 参考訳(メタデータ) (2020-06-15T12:32:38Z) - Subset Sampling For Progressive Neural Network Learning [106.12874293597754]
プログレッシブニューラルネットワーク学習は、ネットワークのトポロジを漸進的に構築し、トレーニングデータに基づいてパラメータを最適化するアルゴリズムのクラスである。
段階的なトレーニングステップ毎にトレーニングデータのサブセットを活用することで,このプロセスの高速化を提案する。
オブジェクト,シーン,顔の認識における実験結果から,提案手法が最適化手順を大幅に高速化することを示す。
論文 参考訳(メタデータ) (2020-02-17T18:57:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。