Hierarchical Convolutional Neural Network with Feature Preservation and
Autotuned Thresholding for Crack Detection
- URL: http://arxiv.org/abs/2104.10511v1
- Date: Wed, 21 Apr 2021 13:07:58 GMT
- Title: Hierarchical Convolutional Neural Network with Feature Preservation and
Autotuned Thresholding for Crack Detection
- Authors: Qiuchen Zhu, Tran Hiep Dinh, Manh Duong Phung, Quang Phuc Ha
- Abstract summary: Drone imagery is increasingly used in automated inspection for infrastructure surface defects.
This paper proposes a deep learning approach using hierarchical convolutional neural networks with feature preservation.
The proposed technique is then applied to identify surface cracks on the surface of roads, bridges or pavements.
- Score: 5.735035463793008
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Drone imagery is increasingly used in automated inspection for infrastructure
surface defects, especially in hazardous or unreachable environments. In
machine vision, the key to crack detection rests with robust and accurate
algorithms for image processing. To this end, this paper proposes a deep
learning approach using hierarchical convolutional neural networks with feature
preservation (HCNNFP) and an intercontrast iterative thresholding algorithm for
image binarization. First, a set of branch networks is proposed, wherein the
output of previous convolutional blocks is half-sizedly concatenated to the
current ones to reduce the obscuration in the down-sampling stage taking into
account the overall information loss. Next, to extract the feature map
generated from the enhanced HCNN, a binary contrast-based autotuned
thresholding (CBAT) approach is developed at the post-processing step, where
patterns of interest are clustered within the probability map of the identified
features. The proposed technique is then applied to identify surface cracks on
the surface of roads, bridges or pavements. An extensive comparison with
existing techniques is conducted on various datasets and subject to a number of
evaluation criteria including the average F-measure (AF\b{eta}) introduced here
for dynamic quantification of the performance. Experiments on crack images,
including those captured by unmanned aerial vehicles inspecting a monorail
bridge. The proposed technique outperforms the existing methods on various
tested datasets especially for GAPs dataset with an increase of about 1.4% in
terms of AF\b{eta} while the mean percentage error drops by 2.2%. Such
performance demonstrates the merits of the proposed HCNNFP architecture for
surface defect inspection.
Related papers
- Enhanced Wavelet Scattering Network for image inpainting detection [0.0]
This paper proposes several innovative ideas for detecting inpainting forgeries based on low level noise analysis.
It combines Dual-Tree Complex Wavelet Transform (DT-CWT) for feature extraction with convolutional neural networks (CNN) for forged area detection and localization.
Our approach was benchmarked against state-of-the-art methods and demonstrated superior performance over all cited alternatives.
arXiv Detail & Related papers (2024-09-25T15:27:05Z) - Revisiting Generative Adversarial Networks for Binary Semantic
Segmentation on Imbalanced Datasets [20.538287907723713]
Anomalous crack region detection is a typical binary semantic segmentation task, which aims to detect pixels representing cracks on pavement surface images automatically by algorithms.
Existing deep learning-based methods have achieved outcoming results on specific public pavement datasets, but the performance would deteriorate dramatically on imbalanced datasets.
We propose a deep learning framework based on conditional Generative Adversarial Networks (cGANs) for the anomalous crack region detection tasks at the pixel level.
arXiv Detail & Related papers (2024-02-03T19:24:40Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - PRISTA-Net: Deep Iterative Shrinkage Thresholding Network for Coded
Diffraction Patterns Phase Retrieval [6.982256124089]
Phase retrieval is a challenge nonlinear inverse problem in computational imaging and image processing.
We have developed PRISTA-Net, a deep unfolding network based on the first-order iterative threshold threshold algorithm (ISTA)
All parameters in the proposed PRISTA-Net framework, including the nonlinear transformation, threshold, and step size, are learned-to-end instead of being set.
arXiv Detail & Related papers (2023-09-08T07:37:15Z) - Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
Histopathology image synthesis aims to address the data shortage issue in training deep learning approaches for accurate cancer detection.
We propose a novel approach that enhances the quality of synthetic images by using nuclei topology and contour regularization.
The proposed approach outperforms Sharp-GAN in all four image quality metrics on two datasets.
arXiv Detail & Related papers (2023-01-24T17:54:01Z) - One-Stage Deep Edge Detection Based on Dense-Scale Feature Fusion and
Pixel-Level Imbalance Learning [5.370848116287344]
We propose a one-stage neural network model that can generate high-quality edge images without postprocessing.
The proposed model adopts a classic encoder-decoder framework in which a pre-trained neural model is used as the encoder.
We propose a new loss function that addresses the pixel-level imbalance in the edge image.
arXiv Detail & Related papers (2022-03-17T15:26:00Z) - Generalizing Face Forgery Detection with High-frequency Features [63.33397573649408]
Current CNN-based detectors tend to overfit to method-specific color textures and thus fail to generalize.
We propose to utilize the high-frequency noises for face forgery detection.
The first is the multi-scale high-frequency feature extraction module that extracts high-frequency noises at multiple scales.
The second is the residual-guided spatial attention module that guides the low-level RGB feature extractor to concentrate more on forgery traces from a new perspective.
arXiv Detail & Related papers (2021-03-23T08:19:21Z) - Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction [158.88345945211185]
We present a novel approach that advances the state of the art on pixel-level prediction in a fundamental aspect, i.e. structured multi-scale features learning and fusion.
We propose a probabilistic graph attention network structure based on a novel Attention-Gated Conditional Random Fields (AG-CRFs) model for learning and fusing multi-scale representations in a principled manner.
arXiv Detail & Related papers (2021-01-08T04:14:29Z) - Efficient detection of adversarial images [2.6249027950824506]
Some or all pixel values of an image are modified by an external attacker, so that the change is almost invisible to the human eye.
This paper first proposes a novel pre-processing technique that facilitates the detection of such modified images.
An adaptive version of this algorithm is proposed where a random number of perturbations are chosen adaptively.
arXiv Detail & Related papers (2020-07-09T05:35:49Z) - UC-Net: Uncertainty Inspired RGB-D Saliency Detection via Conditional
Variational Autoencoders [81.5490760424213]
We propose the first framework (UCNet) to employ uncertainty for RGB-D saliency detection by learning from the data labeling process.
Inspired by the saliency data labeling process, we propose probabilistic RGB-D saliency detection network.
arXiv Detail & Related papers (2020-04-13T04:12:59Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
We propose a novel framework by learning high-order relation and topology information for discriminative features and robust alignment.
Our framework significantly outperforms state-of-the-art by6.5%mAP scores on Occluded-Duke dataset.
arXiv Detail & Related papers (2020-03-18T12:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.