論文の概要: Real-time dense 3D Reconstruction from monocular video data captured by
low-cost UAVs
- arxiv url: http://arxiv.org/abs/2104.10515v1
- Date: Wed, 21 Apr 2021 13:12:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-22 19:14:25.804462
- Title: Real-time dense 3D Reconstruction from monocular video data captured by
low-cost UAVs
- Title(参考訳): 低コストUAVによる単眼映像データからのリアルタイム高密度3次元再構成
- Authors: Max Hermann, Boitumelo Ruf, Martin Weinmann
- Abstract要約: リアルタイム3d再構築は,ナビゲーションや緊急時のライブ評価など,多数のアプリケーションにメリットがある環境の高速密マッピングを可能にする。
ほとんどのリアルタイム対応のアプローチとは対照的に、我々のアプローチは明示的な深度センサーを必要としない。
建物周辺を斜め視で飛行する無人航空機(UAV)の自己動作を利用して、選択された画像のカメラ軌道と深度の両方を、十分な新規な内容で推定します。
- 参考スコア(独自算出の注目度): 0.3867363075280543
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-time 3D reconstruction enables fast dense mapping of the environment
which benefits numerous applications, such as navigation or live evaluation of
an emergency. In contrast to most real-time capable approaches, our approach
does not need an explicit depth sensor. Instead, we only rely on a video stream
from a camera and its intrinsic calibration. By exploiting the self-motion of
the unmanned aerial vehicle (UAV) flying with oblique view around buildings, we
estimate both camera trajectory and depth for selected images with enough novel
content. To create a 3D model of the scene, we rely on a three-stage processing
chain. First, we estimate the rough camera trajectory using a simultaneous
localization and mapping (SLAM) algorithm. Once a suitable constellation is
found, we estimate depth for local bundles of images using a Multi-View Stereo
(MVS) approach and then fuse this depth into a global surfel-based model. For
our evaluation, we use 55 video sequences with diverse settings, consisting of
both synthetic and real scenes. We evaluate not only the generated
reconstruction but also the intermediate products and achieve competitive
results both qualitatively and quantitatively. At the same time, our method can
keep up with a 30 fps video for a resolution of 768x448 pixels.
- Abstract(参考訳): リアルタイム3d再構築は,ナビゲーションや緊急時のライブ評価など,多数のアプリケーションにメリットがある環境の高速密マッピングを可能にする。
ほとんどのリアルタイム対応のアプローチとは対照的に、我々のアプローチは明示的な深度センサーを必要としない。
その代わり、私たちはカメラからの動画ストリームと固有のキャリブレーションにのみ依存しています。
建物周辺の斜め視で飛行する無人航空機 (uav) の自動を生かして, カメラの軌跡と深度を, 十分な新規コンテンツで推定した。
シーンの3Dモデルを作成するには、3段階の処理チェーンに依存します。
まず,同時ローカライゼーション・マッピング(slam)アルゴリズムを用いて,粗いカメラの軌跡を推定する。
適切な星座が見つかると、Multi-View Stereo(MVS)アプローチを用いて画像の局所バンドルの深さを推定し、この深さをグローバルなサーベイルベースモデルに融合する。
評価には,合成シーンと実シーンのいずれにおいても,さまざまな設定の55の映像シーケンスを用いた。
生成した再構成だけでなく中間生成物も評価し,質的かつ定量的に競合結果を得る。
同時に、768x448ピクセルの解像度で30fpsの動画を撮影できる。
関連論文リスト
- DUSt3R: Geometric 3D Vision Made Easy [8.471330244002564]
Dense and Unconstrained Stereo 3D Reconstruction of arbitrary image collections。
本定式化は単眼および両眼の再建症例を円滑に統一することを示す。
私たちの定式化はシーンの3Dモデルと深度情報を直接提供しますが、興味深いことに、シームレスに回復できます。
論文 参考訳(メタデータ) (2023-12-21T18:52:14Z) - R3D3: Dense 3D Reconstruction of Dynamic Scenes from Multiple Cameras [106.52409577316389]
R3D3は高密度3次元再構成とエゴモーション推定のためのマルチカメラシステムである。
提案手法は,複数のカメラからの時空間情報と単眼深度補正を利用する。
この設計により、困難で動的な屋外環境の密集した一貫した3次元再構成が可能になる。
論文 参考訳(メタデータ) (2023-08-28T17:13:49Z) - FlowCam: Training Generalizable 3D Radiance Fields without Camera Poses
via Pixel-Aligned Scene Flow [26.528667940013598]
ポーズ画像からの3次元ニューラルネットワークの再構成は、自己教師付き表現学習の有望な方法として現れている。
これらの3Dシーンの学習者が大規模ビデオデータに展開するのを防ぐ重要な課題は、構造から移動までの正確なカメラポーズに依存することである。
本稿では,オンラインと1つのフォワードパスでカメラポーズと3Dニューラルシーン表現を共同で再構築する手法を提案する。
論文 参考訳(メタデータ) (2023-05-31T20:58:46Z) - Scene-Aware 3D Multi-Human Motion Capture from a Single Camera [83.06768487435818]
静止カメラで記録された1枚のRGBビデオから、シーン内の複数の人間の3次元位置を推定し、その身体形状と調音を推定する問題を考察する。
コンピュータビジョンの最近の進歩を,2次元の人体関節,関節角度,正規化不均等マップ,人間のセグメンテーションマスクなど,様々なモダリティのための大規模事前訓練モデルを用いて活用している。
特に,2次元の関節と関節角度を用いた正規化不均等予測から,シーン深度とユニークな人格尺度を推定する。
論文 参考訳(メタデータ) (2023-01-12T18:01:28Z) - Shakes on a Plane: Unsupervised Depth Estimation from Unstabilized
Photography [54.36608424943729]
2秒で取得した12メガピクセルのRAWフレームの「長バースト」では,自然手震動のみからの視差情報で高品質のシーン深度を回復できることが示されている。
我々は、長時間バーストデータにニューラルRGB-D表現を適合させるテスト時間最適化手法を考案し、シーン深度とカメラモーションを同時に推定する。
論文 参考訳(メタデータ) (2022-12-22T18:54:34Z) - Towards 3D Scene Reconstruction from Locally Scale-Aligned Monocular
Video Depth [90.33296913575818]
映像深度推定や映像からの3次元シーン再構成のようなビデオベースのシナリオでは、フレームごとの予測における未知のスケールとシフトが深度の不整合を引き起こす可能性がある。
局所重み付き線形回帰法を提案する。
提案手法は,複数のゼロショットベンチマークにおいて,既存の最先端手法の性能を50%向上させることができる。
論文 参考訳(メタデータ) (2022-02-03T08:52:54Z) - Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo [71.59494156155309]
既存のマルチビュー3Dポーズ推定手法は、複数のカメラビューからグループ2Dポーズ検出に対するクロスビュー対応を明確に確立する。
平面スイープステレオに基づくマルチビュー3Dポーズ推定手法を提案し、クロスビュー融合と3Dポーズ再構築を1ショットで共同で解決します。
論文 参考訳(メタデータ) (2021-04-06T03:49:35Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
空間校正カメラで撮影した多視点画像から3次元ポーズを復元する手法を提案する。
我々は3次元形状を利用して、入力画像をカメラ視点から切り離したポーズの潜在表現に融合する。
アーキテクチャは、カメラプロジェクション演算子に学習した表現を条件付け、ビュー当たりの正確な2次元検出を生成する。
論文 参考訳(メタデータ) (2020-04-05T12:52:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。