論文の概要: Recurrent Feedback Improves Recognition of Partially Occluded Objects
- arxiv url: http://arxiv.org/abs/2104.10615v1
- Date: Wed, 21 Apr 2021 16:18:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-22 14:32:46.094824
- Title: Recurrent Feedback Improves Recognition of Partially Occluded Objects
- Title(参考訳): リカレントフィードバックによる部分付加物体の認識の改善
- Authors: Markus Roland Ernst, Jochen Triesch, Thomas Burwick
- Abstract要約: 人工ニューラルネットワークが再発の恩恵を受けるかどうかについて検討する。
競合パラメトリック複雑性のフィードフォワードモデルと比較して,繰り返しモデルでは分類精度が有意に高いことがわかった。
- 参考スコア(独自算出の注目度): 1.452875650827562
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recurrent connectivity in the visual cortex is believed to aid object
recognition for challenging conditions such as occlusion. Here we investigate
if and how artificial neural networks also benefit from recurrence. We compare
architectures composed of bottom-up, lateral and top-down connections and
evaluate their performance using two novel stereoscopic occluded object
datasets. We find that classification accuracy is significantly higher for
recurrent models when compared to feedforward models of matched parametric
complexity. Additionally we show that for challenging stimuli, the recurrent
feedback is able to correctly revise the initial feedforward guess.
- Abstract(参考訳): 視覚野における繰り返しの接続は、咬合などの困難な条件に対する物体認識を助けると考えられている。
本稿では,ニューラルネットワークが再発の恩恵を受けるかどうか,その効果について検討する。
ボトムアップ,横,トップダウンの接続からなるアーキテクチャを比較し,その性能を2つの新しい立体オクルードオブジェクトデータセットを用いて評価する。
一致するパラメトリック複雑性のフィードフォワードモデルと比較して,再帰モデルでは分類精度が有意に高いことがわかった。
さらに,刺激に挑戦する場合,フィードバックの繰り返しが最初のフィードフォワードの推測を正しく修正できることを示す。
関連論文リスト
- Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - REBAR: Retrieval-Based Reconstruction for Time-series Contrastive Learning [64.08293076551601]
正の対を識別する学習尺度を新たに提案する。
検索ベースレコンストラクションは2つのシーケンス間の類似度を測定する。
本稿では,REBAR誤差が相互クラスメンバシップの予測因子であることを示す。
論文 参考訳(メタデータ) (2023-11-01T13:44:45Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
弱点アノテーションを用いたドメイン適応型シナプス検出のためのフレームワークであるAdaSynを提案する。
I SBI 2023のWASPSYNチャレンジでは、我々の手法が第1位にランクインした。
論文 参考訳(メタデータ) (2023-08-31T05:05:53Z) - Local Consensus Enhanced Siamese Network with Reciprocal Loss for
Two-view Correspondence Learning [35.5851523517487]
2視点対応学習は通常、一致の信頼性と相対的なポーズを共同で予測するエンドツーエンドネットワークを確立する。
本稿では,既存のモデルの特徴を増強するローカル・フィーチャー・コンセンサス (LFC) プラグイン・ブロックを提案する。
我々は既存のモデルを相互予測の監督を生かした相互損失を伴うシームズネットワークに拡張する。
論文 参考訳(メタデータ) (2023-08-06T22:20:09Z) - Improving Out-of-Distribution Generalization of Neural Rerankers with
Contextualized Late Interaction [52.63663547523033]
マルチベクトルの最も単純な形式である後期相互作用は、[]ベクトルのみを使用して類似度スコアを計算する神経リランカにも役立ちます。
異なるモデルサイズと多様な性質の第一段階のレトリバーに一貫性があることが示される。
論文 参考訳(メタデータ) (2023-02-13T18:42:17Z) - Making Reconstruction-based Method Great Again for Video Anomaly
Detection [64.19326819088563]
ビデオの異常検出は重要な問題だが、難しい問題だ。
既存の再構成に基づく手法は、昔ながらの畳み込みオートエンコーダに依存している。
連続フレーム再構築のための新しいオートエンコーダモデルを提案する。
論文 参考訳(メタデータ) (2023-01-28T01:57:57Z) - Feedback-Gated Rectified Linear Units [0.0]
整流線形ユニットをゲートとする生物学的フィードバック機構を提案する。
MNISTデータセットでは、フィードバックのないオートエンコーダは、フィードバックのないものに比べて、より高速な収束、パフォーマンスの向上、ノイズに対する堅牢性を示している。
論文 参考訳(メタデータ) (2023-01-06T17:14:11Z) - Connective Reconstruction-based Novelty Detection [3.7706789983985303]
ディープラーニングにより、説明できないサンプルを含む実世界のデータを分析できるようになった。
GANベースのアプローチは、分散フィッティングを行う能力のため、この問題に対処するために広く利用されている。
本稿では,GANモデルの制約を補うために複雑化を伴わない,シンプルで効率的な再構成手法を提案する。
論文 参考訳(メタデータ) (2022-10-25T11:09:39Z) - Forget-me-not! Contrastive Critics for Mitigating Posterior Collapse [20.258298183228824]
我々は,潜伏変数と観測値の対応を必要とする事で,後部崩壊を検知し,インセンティブを与える推論評論家を紹介した。
このアプローチは実装が簡単で、事前のメソッドよりもトレーニング時間が大幅に少なくなります。
論文 参考訳(メタデータ) (2022-07-19T20:07:17Z) - Automatically Generating Counterfactuals for Relation Exaction [18.740447044960796]
関係抽出(RE)は自然言語処理の基本課題である。
現在のディープニューラルモデルは高い精度を達成しているが、スプリアス相関の影響を受けやすい。
我々は、エンティティの文脈的反事実を導出するための新しいアプローチを開発する。
論文 参考訳(メタデータ) (2022-02-22T04:46:10Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。