PocketNet: A Smaller Neural Network for 3D Medical Image Segmentation
- URL: http://arxiv.org/abs/2104.10745v1
- Date: Wed, 21 Apr 2021 20:10:30 GMT
- Title: PocketNet: A Smaller Neural Network for 3D Medical Image Segmentation
- Authors: Adrian Celaya, Jonas Actor, Rajarajeswari Muthusivarajan, Evan Gates,
Caroline Chung, Dawid Schellingerhout, Beatrice Riviere, David Fuentes
- Abstract summary: We derive a new CNN architecture called PocketNet that achieves comparable segmentation results to conventional CNNs while using less than 3% of the number of parameters.
We show that PocketNet achieves comparable segmentation results to conventional CNNs while using less than 3% of the number of parameters.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Overparameterized deep learning networks have shown impressive performance in
the area of automatic medical image segmentation. However, they achieve this
performance at an enormous cost in memory, runtime, and energy. A large source
of overparameterization in modern neural networks results from doubling the
number of feature maps with each downsampling layer. This rapid growth in the
number of parameters results in network architectures that require a
significant amount of computing resources, making them less accessible and
difficult to use. By keeping the number of feature maps constant throughout the
network, we derive a new CNN architecture called PocketNet that achieves
comparable segmentation results to conventional CNNs while using less than 3%
of the number of parameters.
Related papers
- RedBit: An End-to-End Flexible Framework for Evaluating the Accuracy of
Quantized CNNs [9.807687918954763]
Convolutional Neural Networks (CNNs) have become the standard class of deep neural network for image processing, classification and segmentation tasks.
RedBit is an open-source framework that provides a transparent, easy-to-use interface to evaluate the effectiveness of different algorithms on network accuracy.
arXiv Detail & Related papers (2023-01-15T21:27:35Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
Unrolled neural networks have recently achieved state-of-the-art accelerated MRI reconstruction.
These networks unroll iterative optimization algorithms by alternating between physics-based consistency and neural-network based regularization.
We propose Greedy LEarning for Accelerated MRI reconstruction, an efficient training strategy for high-dimensional imaging settings.
arXiv Detail & Related papers (2022-07-18T06:01:29Z) - Variable Bitrate Neural Fields [75.24672452527795]
We present a dictionary method for compressing feature grids, reducing their memory consumption by up to 100x.
We formulate the dictionary optimization as a vector-quantized auto-decoder problem which lets us learn end-to-end discrete neural representations in a space where no direct supervision is available.
arXiv Detail & Related papers (2022-06-15T17:58:34Z) - Binary Neural Network for Speaker Verification [13.472791713805762]
This paper focuses on how to apply binary neural networks to the task of speaker verification.
Experiment results show that, after binarizing the Convolutional Neural Network, the ResNet34-based network achieves an EER of around 5%.
arXiv Detail & Related papers (2021-04-06T06:04:57Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
Convolutional neural networks (CNNs) have been the de facto standard for nowadays 3D medical image segmentation.
We propose a novel framework that efficiently bridges a bf Convolutional neural network and a bf Transformer bf (CoTr) for accurate 3D medical image segmentation.
arXiv Detail & Related papers (2021-03-04T13:34:22Z) - ItNet: iterative neural networks with small graphs for accurate and
efficient anytime prediction [1.52292571922932]
In this study, we introduce a class of network models that have a small memory footprint in terms of their computational graphs.
We show state-of-the-art results for semantic segmentation on the CamVid and Cityscapes datasets.
arXiv Detail & Related papers (2021-01-21T15:56:29Z) - Binary Graph Neural Networks [69.51765073772226]
Graph Neural Networks (GNNs) have emerged as a powerful and flexible framework for representation learning on irregular data.
In this paper, we present and evaluate different strategies for the binarization of graph neural networks.
We show that through careful design of the models, and control of the training process, binary graph neural networks can be trained at only a moderate cost in accuracy on challenging benchmarks.
arXiv Detail & Related papers (2020-12-31T18:48:58Z) - Multigrid-in-Channels Architectures for Wide Convolutional Neural
Networks [6.929025509877642]
We present a multigrid approach that combats the quadratic growth of the number of parameters with respect to the number of channels in standard convolutional neural networks (CNNs)
Our examples from supervised image classification show that applying this strategy to residual networks and MobileNetV2 considerably reduces the number of parameters without negatively affecting accuracy.
arXiv Detail & Related papers (2020-06-11T20:28:36Z) - DRU-net: An Efficient Deep Convolutional Neural Network for Medical
Image Segmentation [2.3574651879602215]
Residual network (ResNet) and densely connected network (DenseNet) have significantly improved the training efficiency and performance of deep convolutional neural networks (DCNNs)
We propose an efficient network architecture by considering advantages of both networks.
arXiv Detail & Related papers (2020-04-28T12:16:24Z) - CRNet: Cross-Reference Networks for Few-Shot Segmentation [59.85183776573642]
Few-shot segmentation aims to learn a segmentation model that can be generalized to novel classes with only a few training images.
With a cross-reference mechanism, our network can better find the co-occurrent objects in the two images.
Experiments on the PASCAL VOC 2012 dataset show that our network achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-03-24T04:55:43Z) - Real-Time High-Performance Semantic Image Segmentation of Urban Street
Scenes [98.65457534223539]
We propose a real-time high-performance DCNN-based method for robust semantic segmentation of urban street scenes.
The proposed method achieves the accuracy of 73.6% and 68.0% mean Intersection over Union (mIoU) with the inference speed of 51.0 fps and 39.3 fps.
arXiv Detail & Related papers (2020-03-11T08:45:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.