The Road Less Travelled: Trying And Failing To Generate Walking
Simulators
- URL: http://arxiv.org/abs/2104.10789v2
- Date: Fri, 23 Apr 2021 16:29:16 GMT
- Title: The Road Less Travelled: Trying And Failing To Generate Walking
Simulators
- Authors: Michael Cook
- Abstract summary: This paper describes several attempts to build an automated game designer for 3D games more focused on space, atmosphere and experience.
We describe our attempts to build these systems, why they failed, and what steps and future work we believe would be useful for future attempts by others.
- Score: 0.38073142980732994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated game design is a rapidly growing area of research, yet many aspects
of game design lie largely unexamined still, as most systems focus on
two-dimensional games with clear objectives and goal-oriented gameplay. This
paper describes several attempts to build an automated game designer for 3D
games more focused on space, atmosphere and experience. We describe our
attempts to build these systems, why they failed, and what steps and future
work we believe would be useful for future attempts by others.
Related papers
- Instruction-Driven Game Engines on Large Language Models [59.280666591243154]
The IDGE project aims to democratize game development by enabling a large language model to follow free-form game rules.
We train the IDGE in a curriculum manner that progressively increases the model's exposure to complex scenarios.
Our initial progress lies in developing an IDGE for Poker, a universally cherished card game.
arXiv Detail & Related papers (2024-03-30T08:02:16Z) - Technical Challenges of Deploying Reinforcement Learning Agents for Game
Testing in AAA Games [58.720142291102135]
We describe an effort to add an experimental reinforcement learning system to an existing automated game testing solution based on scripted bots.
We show a use-case of leveraging reinforcement learning in game production and cover some of the largest time sinks anyone who wants to make the same journey for their game may encounter.
We propose a few research directions that we believe will be valuable and necessary for making machine learning, and especially reinforcement learning, an effective tool in game production.
arXiv Detail & Related papers (2023-07-19T18:19:23Z) - Legged Locomotion in Challenging Terrains using Egocentric Vision [70.37554680771322]
We present the first end-to-end locomotion system capable of traversing stairs, curbs, stepping stones, and gaps.
We show this result on a medium-sized quadruped robot using a single front-facing depth camera.
arXiv Detail & Related papers (2022-11-14T18:59:58Z) - Go-Explore Complex 3D Game Environments for Automated Reachability
Testing [4.322647881761983]
We propose an approach specifically targeted at reachability bugs in simulated 3D environments based on the powerful exploration algorithm, Go-Explore.
Go-Explore saves unique checkpoints across the map and then identifies promising ones to explore from.
Our algorithm can fully cover a vast 1.5km x 1.5km game world within 10 hours on a single machine.
arXiv Detail & Related papers (2022-09-01T16:31:37Z) - CCPT: Automatic Gameplay Testing and Validation with
Curiosity-Conditioned Proximal Trajectories [65.35714948506032]
The Curiosity-Conditioned Proximal Trajectories (CCPT) method combines curiosity and imitation learning to train agents to explore.
We show how CCPT can explore complex environments, discover gameplay issues and design oversights in the process, and recognize and highlight them directly to game designers.
arXiv Detail & Related papers (2022-02-21T09:08:33Z) - Adversarial Random Forest Classifier for Automated Game Design [1.590611306750623]
We describe an experiment to attempt to learn a human-like fitness function for autonomous game design in an adversarial manner.
While our experimental work did not meet our expectations, we present an analysis of our system and results that we hope will be informative to future autonomous game design research.
arXiv Detail & Related papers (2021-07-26T22:30:38Z) - The ThreeDWorld Transport Challenge: A Visually Guided Task-and-Motion
Planning Benchmark for Physically Realistic Embodied AI [96.86091264553613]
We introduce a visually-guided and physics-driven task-and-motion planning benchmark, which we call the ThreeDWorld Transport Challenge.
In this challenge, an embodied agent equipped with two 9-DOF articulated arms is spawned randomly in a simulated physical home environment.
The agent is required to find a small set of objects scattered around the house, pick them up, and transport them to a desired final location.
arXiv Detail & Related papers (2021-03-25T17:59:08Z) - Designing a mobile game to generate player data -- lessons learned [2.695466667982714]
We developed a mobile game without the guidance of similar projects.
Research into game balancing and system simulation required an experimental case study.
In creating RPGLitewe learned a series of lessons about effective amateur game development for research purposes.
arXiv Detail & Related papers (2021-01-18T16:16:58Z) - Conceptual Game Expansion [10.647788986944994]
We learn representations of existing games from gameplay video and use these to approximate a search space of novel games.
In a human subject study we demonstrate that these novel games are indistinguishable from human games in terms of challenge.
arXiv Detail & Related papers (2020-02-22T05:51:54Z) - Neural MMO v1.3: A Massively Multiagent Game Environment for Training
and Evaluating Neural Networks [48.5733173329785]
We present Neural MMO, a massively multiagent game environment inspired by MMOs.
We discuss our progress on two more general challenges in multiagent systems engineering for AI research: distributed infrastructure and game IO.
arXiv Detail & Related papers (2020-01-31T18:50:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.