論文の概要: Extracting Adverse Drug Events from Clinical Notes
- arxiv url: http://arxiv.org/abs/2104.10791v1
- Date: Wed, 21 Apr 2021 23:10:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-24 00:01:47.486301
- Title: Extracting Adverse Drug Events from Clinical Notes
- Title(参考訳): 臨床ノートから逆薬事象を抽出する
- Authors: Darshini Mahendran and Bridget T. McInnes
- Abstract要約: 有害薬物イベント(ADEs)は、薬物または薬物の投与によって引き起こされる予期せぬ出来事です。
本稿では, 関連抽出手法を用いて, 薬物とその関連属性との関係を検討する。
- 参考スコア(独自算出の注目度): 1.6244541005112747
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adverse drug events (ADEs) are unexpected incidents caused by the
administration of a drug or medication. To identify and extract these events,
we require information about not just the drug itself but attributes describing
the drug (e.g., strength, dosage), the reason why the drug was initially
prescribed, and any adverse reaction to the drug. This paper explores the
relationship between a drug and its associated attributes using relation
extraction techniques. We explore three approaches: a rule-based approach, a
deep learning-based approach, and a contextualized language model-based
approach. We evaluate our system on the n2c2-2018 ADE extraction dataset. Our
experimental results demonstrate that the contextualized language model-based
approach outperformed other models overall and obtain the state-of-the-art
performance in ADE extraction with a Precision of 0.93, Recall of 0.96, and an
$F_1$ score of 0.94; however, for certain relation types, the rule-based
approach obtained a higher Precision and Recall than either learning approach.
- Abstract(参考訳): 逆薬物イベント(英: adverse drug events、ADEs)は、薬物や薬物の投与によって引き起こされる予期せぬ出来事である。
これらの事象を同定し抽出するには、薬物自体だけでなく、薬物(例えば、強度、摂取量)を説明する属性、薬物が最初に処方された理由、薬物に対する悪反応に関する情報が必要である。
本稿では,薬物とその関連属性の関係を関係抽出法を用いて検討する。
ルールベースアプローチ,ディープラーニングベースアプローチ,コンテキスト化された言語モデルベースアプローチの3つのアプローチを検討した。
n2c2-2018 ade抽出データセット上でシステムを評価する。
実験の結果,文脈型言語モデルに基づくアプローチは,他のモデルよりも優れ,精度0.93,再現率0.96,F_1$スコア0.94のADE抽出における最先端性能が得られた。
関連論文リスト
- Drug Interaction Vectors Neural Network: DrIVeNN [0.7624669864625037]
ポリファーマシー(英: Poly Pharmacy)とは、複数の薬物を同時に併用して単一の疾患を治療することである。
ポリファーマシーに関連する多くの重篤なADEは、薬物の使用後にのみ知られるようになる。
臨床試験において、あらゆる可能な薬物の組み合わせをテストすることは不可能である。
論文 参考訳(メタデータ) (2023-08-26T14:24:41Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - RECOMED: A Comprehensive Pharmaceutical Recommendation System [8.681590862953623]
Drugs.com と Druglib.com から抽出された患者と薬物の特徴に基づいて医薬品推薦システムが設計された。
本研究は, 患者に適切な特定の薬剤を選択するためのアプローチとして, 患者状況と病歴を考察した最初のグループである。
論文 参考訳(メタデータ) (2022-12-31T20:04:31Z) - Neural Bandits for Data Mining: Searching for Dangerous Polypharmacy [63.135687276599114]
一部の多薬局は、不適切とみなされており、死亡や入院などの健康上の有害な結果に関係している可能性がある。
我々は、クレームデータセットを効率的にマイニングし、薬物の組み合わせと健康結果の関係の予測モデルを構築するためのOptimNeuralTS戦略を提案する。
提案手法では,最大72%のPIPを検出でき,平均精度は99%であり,30000タイムステップで検出できる。
論文 参考訳(メタデータ) (2022-12-10T03:43:23Z) - Knowledge-Driven New Drug Recommendation [88.35607943144261]
既存の薬物と新薬のギャップを埋めるために, 薬物依存型マルチフェノタイプ数発学習機を開発した。
EDGEは外部薬効知識ベースを用いて偽陰性監視信号を除去する。
その結果, EDGEは, ROC-AUCスコアよりも7.3%向上していることがわかった。
論文 参考訳(メタデータ) (2022-10-11T16:07:52Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z) - SafeDrug: Dual Molecular Graph Encoders for Safe Drug Recommendations [59.590084937600764]
医薬品の分子構造とDDIのモデルを明確に活用するために、SafeDrugというDDI制御可能な薬物推奨モデルを提案する。
ベンチマークデータセットでは、SafeDrugはDDIを19.43%削減し、Jaccardの推奨薬物と実際に処方された薬物の組み合わせの2.88%を改善します。
論文 参考訳(メタデータ) (2021-05-05T00:20:48Z) - Drug Repurposing for COVID-19 via Knowledge Graph Completion [6.705100803382272]
薬物候補を同定するための新しい,統合的で,ニューラルネットワークに基づく文献ベースの発見(LBD)手法を提案する。
提案手法は,SemRepを用いて抽出したセマンティックトリプルに依存する。
5つのSOTA, 神経知識グラフ補完アルゴリズムを用いて, 薬物再服用候補の予測を行った。
論文 参考訳(メタデータ) (2020-10-19T15:30:51Z) - Learning-based Computer-aided Prescription Model for Parkinson's
Disease: A Data-driven Perspective [61.70045118068213]
我々は、PD患者の症状と、神経科医が提供した処方薬を収集し、データセットを構築した。
そこで我々は、観察された症状と処方薬との関係を学習し、新しいコンピュータ支援処方薬モデルを構築した。
新来の患者に対しては、処方薬モデルにより、観察された症状に対して適切な処方薬を推奨できる(予測)。
論文 参考訳(メタデータ) (2020-07-31T14:34:35Z) - Drug-Drug Interaction Prediction with Wasserstein Adversarial
Autoencoder-based Knowledge Graph Embeddings [22.562175708415392]
薬物・薬物相互作用のための知識グラフ埋め込みフレームワークを提案する。
本フレームワークでは, 高品質な負のサンプルを生成するために, オートエンコーダを用いる。
判別器は、正三重項と負三重項の両方に基づいて薬物と相互作用の埋め込みを学習する。
論文 参考訳(メタデータ) (2020-04-15T21:03:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。