論文の概要: Focusing on Shadows for Predicting Heightmaps from Single Remotely
Sensed RGB Images with Deep Learning
- arxiv url: http://arxiv.org/abs/2104.10874v1
- Date: Thu, 22 Apr 2021 05:31:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-23 14:05:12.152474
- Title: Focusing on Shadows for Predicting Heightmaps from Single Remotely
Sensed RGB Images with Deep Learning
- Title(参考訳): 深層学習を用いたリモートセンシングrgb画像からのハイプマップ予測のためのシャドウに着目して
- Authors: Savvas Karatsiolis and Andreas Kamilaris
- Abstract要約: 本研究では,リモートセンシング画像のシャドウマップを利用したタスク指向ディープラーニングモデルを提案し,その高さマップを算出する。
英国マンチェスターの広大なエリアをカバーするデータセットでモデルを検証する。
- 参考スコア(独自算出の注目度): 3.42658286826597
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Estimating the heightmaps of buildings and vegetation in single remotely
sensed images is a challenging problem. Effective solutions to this problem can
comprise the stepping stone for solving complex and demanding problems that
require 3D information of aerial imagery in the remote sensing discipline,
which might be expensive or not feasible to require. We propose a task-focused
Deep Learning (DL) model that takes advantage of the shadow map of a remotely
sensed image to calculate its heightmap. The shadow is computed efficiently and
does not add significant computation complexity. The model is trained with
aerial images and their Lidar measurements, achieving superior performance on
the task. We validate the model with a dataset covering a large area of
Manchester, UK, as well as the 2018 IEEE GRSS Data Fusion Contest Lidar
dataset. Our work suggests that the proposed DL architecture and the technique
of injecting shadows information into the model are valuable for improving the
heightmap estimation task for single remotely sensed imagery.
- Abstract(参考訳): 単一のリモートセンシング画像における建物と植生の高さマップの推定は難しい課題である。
この問題に対する効果的な解決策は、遠隔センシング分野における空中画像の3次元情報を必要とする複雑で要求の多い問題を解くためのステップストーンを構成することができる。
本稿では,リモートセンシング画像のシャドーマップを利用したタスク中心のDeep Learning(DL)モデルを提案する。
シャドウは効率的に計算され、計算の複雑さをあまり増やさない。
モデルは、空中画像とライダーの測定で訓練され、タスクにおいて優れたパフォーマンスを達成する。
我々は、英国マンチェスターの広範囲をカバーするデータセットと、2018年のIEEE GRSS Data Fusion Contest Lidarデータセットでモデルを検証した。
本研究は,提案するDLアーキテクチャと影情報をモデルに注入する手法が,単一リモートセンシング画像の高度マップ推定タスクの改善に有用であることを示唆している。
関連論文リスト
- An evaluation of Deep Learning based stereo dense matching dataset shift
from aerial images and a large scale stereo dataset [2.048226951354646]
そこで本研究では,光検出・ランドング(LiDAR)と画像から直接地中不均質マップを生成する手法を提案する。
多様なシーンタイプ、画像解像度、幾何学的構成を持つデータセット間の11の密マッチング手法を評価した。
論文 参考訳(メタデータ) (2024-02-19T20:33:46Z) - Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data [87.61900472933523]
この研究は、ロバストな単分子深度推定のための非常に実用的な解であるDepth Anythingを提示する。
データエンジンを設計し、大規模な未ラベルデータの収集と注釈付けを自動的に行うことにより、データセットをスケールアップします。
6つのパブリックデータセットとランダムにキャプチャされた写真を含む、ゼロショットの機能を広範囲に評価する。
論文 参考訳(メタデータ) (2024-01-19T18:59:52Z) - Simple and Effective Synthesis of Indoor 3D Scenes [78.95697556834536]
1枚以上の画像から3D屋内シーンを没入する問題について検討する。
我々の狙いは、新しい視点から高解像度の画像とビデオを作成することである。
本稿では,不完全点雲の再投影から高解像度のRGB-D画像へ直接マップするイメージ・ツー・イメージのGANを提案する。
論文 参考訳(メタデータ) (2022-04-06T17:54:46Z) - Large-scale Building Height Retrieval from Single SAR Imagery based on
Bounding Box Regression Networks [21.788338971571736]
合成開口レーダ(SAR)画像からの建物の高さの検索は,都市部において非常に重要である。
本稿では,1つのTerraSAR-Xスポットライトやストリップマップ画像から大規模都市部におけるビルの高さ検索の問題に対処する。
論文 参考訳(メタデータ) (2021-11-18T00:39:48Z) - Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images
with Virtual Depth [64.29043589521308]
仮想深度で画像を合成することでトレーニングデータを増強するレンダリングモジュールを提案する。
レンダリングモジュールは、RGB画像と対応するスパース深度画像とを入力として、さまざまなフォトリアリスティック合成画像を出力する。
さらに,深度推定タスクを通じて共同で最適化することで,検出モデルを改善する補助モジュールを導入する。
論文 参考訳(メタデータ) (2021-07-28T11:00:47Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z) - Towards General Purpose Geometry-Preserving Single-View Depth Estimation [1.9573380763700712]
単視点深度推定(SVDE)は、ARアプリケーション、3Dモデリング、ロボット工学におけるシーン理解において重要な役割を果たす。
近年の研究では、成功するソリューションはトレーニングデータの多様性とボリュームに強く依存していることが示されている。
我々の研究は、従来のデータセットとともに、このデータに基づいてトレーニングされたモデルが、正確なシーン形状を予測しながら精度を向上できることを示している。
論文 参考訳(メタデータ) (2020-09-25T20:06:13Z) - Counting from Sky: A Large-scale Dataset for Remote Sensing Object
Counting and A Benchmark Method [52.182698295053264]
リモートセンシング画像から高密度物体をカウントすることに興味がある。自然界における物体のカウントと比較すると、このタスクは、大規模変動、複雑な乱れ背景、配向仲裁といった要因において困難である。
これらの課題に対処するために,我々はまず,4つの重要な地理的対象を含むリモートセンシング画像を用いた大規模オブジェクトカウントデータセットを構築した。
次に、入力画像の密度マップを生成する新しいニューラルネットワークを設計することで、データセットをベンチマークする。
論文 参考訳(メタデータ) (2020-08-28T03:47:49Z) - Height estimation from single aerial images using a deep ordinal
regression network [12.991266182762597]
単体画像からの高度推定の曖昧で未解決な問題に対処する。
深層学習、特に深層畳み込みニューラルネットワーク(CNN)の成功により、いくつかの研究は、単一の空中画像から高さ情報を推定することを提案した。
本稿では,高さ値を間隔増加間隔に分割し,回帰問題を順序回帰問題に変換することを提案する。
論文 参考訳(メタデータ) (2020-06-04T12:03:51Z) - Counting dense objects in remote sensing images [52.182698295053264]
特定の画像から関心のあるオブジェクトの数を推定するのは、難しいが重要な作業である。
本稿では,リモートセンシング画像から高密度物体を数えることに興味がある。
これらの課題に対処するために,我々はまず,リモートセンシング画像に基づく大規模オブジェクトカウントデータセットを構築した。
次に、入力画像の密度マップを生成する新しいニューラルネットワークを設計することで、データセットをベンチマークする。
論文 参考訳(メタデータ) (2020-02-14T09:13:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。