Hazy Re-ID: An Interference Suppression Model For Domain Adaptation
Person Re-identification Under Inclement Weather Condition
- URL: http://arxiv.org/abs/2104.11004v1
- Date: Thu, 22 Apr 2021 11:59:27 GMT
- Title: Hazy Re-ID: An Interference Suppression Model For Domain Adaptation
Person Re-identification Under Inclement Weather Condition
- Authors: Jian Pang, Dacheng Zhang, Huafeng Li, Weifeng Liu, Zhengtao Yu
- Abstract summary: This paper proposes a novel Interference Suppression Model (ISM) to deal with the interference caused by the hazy weather in domain adaptation person Re-ID.
The proposed method achieves the superior performance on two synthetic datasets than the stateof-the-art methods.
- Score: 9.577145340915115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In a conventional domain adaptation person Re-identification (Re-ID) task,
both the training and test images in target domain are collected under the
sunny weather. However, in reality, the pedestrians to be retrieved may be
obtained under severe weather conditions such as hazy, dusty and snowing, etc.
This paper proposes a novel Interference Suppression Model (ISM) to deal with
the interference caused by the hazy weather in domain adaptation person Re-ID.
A teacherstudent model is used in the ISM to distill the interference
information at the feature level by reducing the discrepancy between the clear
and the hazy intrinsic similarity matrix. Furthermore, in the distribution
level, the extra discriminator is introduced to assist the student model make
the interference feature distribution more clear. The experimental results show
that the proposed method achieves the superior performance on two synthetic
datasets than the stateof-the-art methods. The related code will be released
online https://github.com/pangjian123/ISM-ReID.
Related papers
- SemiDDM-Weather: A Semi-supervised Learning Framework for All-in-one Adverse Weather Removal [57.52777076116241]
Adverse weather removal aims to restore clear vision under adverse weather conditions.
This paper presents a pioneering semi-supervised all-in-one adverse weather removal framework built on the teacher-student network.
arXiv Detail & Related papers (2024-09-29T12:12:22Z) - Semantic-guided Adversarial Diffusion Model for Self-supervised Shadow Removal [5.083330121710086]
GAN-based training often faces issues such as mode collapse and unstable optimization.
We propose a semantic-guided adversarial diffusion framework for self-supervised shadow removal.
We conduct experiments on multiple public datasets, and the experimental results demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-07-01T09:14:38Z) - Denoising as Adaptation: Noise-Space Domain Adaptation for Image Restoration [64.84134880709625]
We show that it is possible to perform domain adaptation via the noise space using diffusion models.
In particular, by leveraging the unique property of how auxiliary conditional inputs influence the multi-step denoising process, we derive a meaningful diffusion loss.
We present crucial strategies such as channel-shuffling layer and residual-swapping contrastive learning in the diffusion model.
arXiv Detail & Related papers (2024-06-26T17:40:30Z) - UniMix: Towards Domain Adaptive and Generalizable LiDAR Semantic Segmentation in Adverse Weather [55.95708988160047]
LiDAR semantic segmentation (LSS) is a critical task in autonomous driving.
Prior LSS methods are investigated and evaluated on datasets within the same domain in clear weather.
We propose UniMix, a universal method that enhances the adaptability and generalizability of LSS models.
arXiv Detail & Related papers (2024-04-08T02:02:15Z) - Model Will Tell: Training Membership Inference for Diffusion Models [15.16244745642374]
Training Membership Inference (TMI) task aims to determine whether a specific sample has been used in the training process of a target model.
In this paper, we explore a novel perspective for the TMI task by leveraging the intrinsic generative priors within the diffusion model.
arXiv Detail & Related papers (2024-03-13T12:52:37Z) - Adaptive Face Recognition Using Adversarial Information Network [57.29464116557734]
Face recognition models often degenerate when training data are different from testing data.
We propose a novel adversarial information network (AIN) to address it.
arXiv Detail & Related papers (2023-05-23T02:14:11Z) - Domain Adaptive Object Detection for Autonomous Driving under Foggy
Weather [25.964194141706923]
This paper proposes a novel domain adaptive object detection framework for autonomous driving under foggy weather.
Our method leverages both image-level and object-level adaptation to diminish the domain discrepancy in image style and object appearance.
Experimental results on public benchmarks show the effectiveness and accuracy of the proposed method.
arXiv Detail & Related papers (2022-10-27T05:09:10Z) - Unsupervised Foggy Scene Understanding via Self Spatial-Temporal Label
Diffusion [51.11295961195151]
We exploit the characteristics of the foggy image sequence of driving scenes to densify the confident pseudo labels.
Based on the two discoveries of local spatial similarity and adjacent temporal correspondence of the sequential image data, we propose a novel Target-Domain driven pseudo label Diffusion scheme.
Our scheme helps the adaptive model achieve 51.92% and 53.84% mean intersection-over-union (mIoU) on two publicly available natural foggy datasets.
arXiv Detail & Related papers (2022-06-10T05:16:50Z) - Unpaired Adversarial Learning for Single Image Deraining with Rain-Space
Contrastive Constraints [61.40893559933964]
We develop an effective unpaired SID method which explores mutual properties of the unpaired exemplars by a contrastive learning manner in a GAN framework, named as CDR-GAN.
Our method performs favorably against existing unpaired deraining approaches on both synthetic and real-world datasets, even outperforms several fully-supervised or semi-supervised models.
arXiv Detail & Related papers (2021-09-07T10:00:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.