Frequency Domain-Based Diffusion Model for Unpaired Image Dehazing
- URL: http://arxiv.org/abs/2507.01275v1
- Date: Wed, 02 Jul 2025 01:22:46 GMT
- Title: Frequency Domain-Based Diffusion Model for Unpaired Image Dehazing
- Authors: Chengxu Liu, Lu Qi, Jinshan Pan, Xueming Qian, Ming-Hsuan Yang,
- Abstract summary: We propose a novel frequency domain-based diffusion model, named ours, for fully exploiting the beneficial knowledge in unpaired clear data.<n>Inspired by the strong generative ability shown by Diffusion Models (DMs), we tackle the dehazing task from the perspective of frequency domain reconstruction.
- Score: 92.61216319417208
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unpaired image dehazing has attracted increasing attention due to its flexible data requirements during model training. Dominant methods based on contrastive learning not only introduce haze-unrelated content information, but also ignore haze-specific properties in the frequency domain (\ie,~haze-related degradation is mainly manifested in the amplitude spectrum). To address these issues, we propose a novel frequency domain-based diffusion model, named \ours, for fully exploiting the beneficial knowledge in unpaired clear data. In particular, inspired by the strong generative ability shown by Diffusion Models (DMs), we tackle the dehazing task from the perspective of frequency domain reconstruction and perform the DMs to yield the amplitude spectrum consistent with the distribution of clear images. To implement it, we propose an Amplitude Residual Encoder (ARE) to extract the amplitude residuals, which effectively compensates for the amplitude gap from the hazy to clear domains, as well as provide supervision for the DMs training. In addition, we propose a Phase Correction Module (PCM) to eliminate artifacts by further refining the phase spectrum during dehazing with a simple attention mechanism. Experimental results demonstrate that our \ours outperforms other state-of-the-art methods on both synthetic and real-world datasets.
Related papers
- FreSca: Scaling in Frequency Space Enhances Diffusion Models [55.75504192166779]
This paper explores frequency-based control within latent diffusion models.<n>We introduce FreSca, a novel framework that decomposes noise difference into low- and high-frequency components.<n>FreSca operates without any model retraining or architectural change, offering model- and task-agnostic control.
arXiv Detail & Related papers (2025-04-02T22:03:11Z) - FAM Diffusion: Frequency and Attention Modulation for High-Resolution Image Generation with Stable Diffusion [63.609399000712905]
Inference at a scaled resolution leads to repetitive patterns and structural distortions.<n>We propose two simple modules that combine to solve these issues.<n>Our method, coined Fam diffusion, can seamlessly integrate into any latent diffusion model and requires no additional training.
arXiv Detail & Related papers (2024-11-27T17:51:44Z) - OSMamba: Omnidirectional Spectral Mamba with Dual-Domain Prior Generator for Exposure Correction [15.884868711123993]
We propose Omnidirectional Spectral Mamba (OSMamba), a novel exposure correction network.<n>OSMamba introduces an omnidirectional spectral scanning mechanism that adapts Mamba to the frequency domain.<n>We develop a dual-domain prior generator that learns from well-exposed images to generate a degradation-free diffusion prior.
arXiv Detail & Related papers (2024-11-22T08:54:16Z) - RSHazeDiff: A Unified Fourier-aware Diffusion Model for Remote Sensing Image Dehazing [32.16602874389847]
Haze severely degrades the visual quality of remote sensing images.
We propose a novel unified Fourier-aware diffusion model for remote sensing image dehazing, termed RSHazeDiff.
Experiments on both synthetic and real-world benchmarks validate the favorable performance of RSHazeDiff over state-of-the-art methods.
arXiv Detail & Related papers (2024-05-15T04:22:27Z) - Reconstruct-and-Generate Diffusion Model for Detail-Preserving Image
Denoising [16.43285056788183]
We propose a novel approach called the Reconstruct-and-Generate Diffusion Model (RnG)
Our method leverages a reconstructive denoising network to recover the majority of the underlying clean signal.
It employs a diffusion algorithm to generate residual high-frequency details, thereby enhancing visual quality.
arXiv Detail & Related papers (2023-09-19T16:01:20Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.<n>This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.<n>We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - Frequency Compensated Diffusion Model for Real-scene Dehazing [6.105813272271171]
We consider a dehazing framework based on conditional diffusion models for improved generalization to real haze.
The proposed dehazing diffusion model significantly outperforms state-of-the-art methods on real-world images.
arXiv Detail & Related papers (2023-08-21T06:50:44Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - Source-Free Domain Adaptation for Real-world Image Dehazing [10.26945164141663]
We present a novel Source-Free Unsupervised Domain Adaptation (SFUDA) image dehazing paradigm.
We devise the Domain Representation Normalization (DRN) module to make the representation of real hazy domain features match that of the synthetic domain.
With our plug-and-play DRN module, unlabeled real hazy images can adapt existing well-trained source networks.
arXiv Detail & Related papers (2022-07-14T03:37:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.