論文の概要: Framing Unpacked: A Semi-Supervised Interpretable Multi-View Model of
Media Frames
- arxiv url: http://arxiv.org/abs/2104.11030v1
- Date: Thu, 22 Apr 2021 13:05:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-23 18:33:26.419123
- Title: Framing Unpacked: A Semi-Supervised Interpretable Multi-View Model of
Media Frames
- Title(参考訳): Framing Unpacked:メディアフレームの半スーパービジョンで解釈可能なマルチビューモデル
- Authors: Shima Khanehzar, Trevor Cohn, Gosia Mikolajczak, Andrew Turpin, Lea
Frermann
- Abstract要約: ニュースメディアが政治問題をどのように捉えるかを理解するための新しい半監督モデルを開発する。
モデルは、ニュース記事にイベントや関連するアクターに関するローカル情報を自動エンコードフレームワークを通じて埋め込むことを学ぶ。
実験の結果,従来のフレーム予測モデルよりも優れていた。
- 参考スコア(独自算出の注目度): 32.06056273913706
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding how news media frame political issues is important due to its
impact on public attitudes, yet hard to automate. Computational approaches have
largely focused on classifying the frame of a full news article while framing
signals are often subtle and local. Furthermore, automatic news analysis is a
sensitive domain, and existing classifiers lack transparency in their
predictions. This paper addresses both issues with a novel semi-supervised
model, which jointly learns to embed local information about the events and
related actors in a news article through an auto-encoding framework, and to
leverage this signal for document-level frame classification. Our experiments
show that: our model outperforms previous models of frame prediction; we can
further improve performance with unlabeled training data leveraging the
semi-supervised nature of our model; and the learnt event and actor embeddings
intuitively corroborate the document-level predictions, providing a nuanced and
interpretable article frame representation.
- Abstract(参考訳): ニュースメディアが政治問題をどう扱うかを理解することは、公共の態度に影響を及ぼすため重要であるが、自動化は困難である。
計算のアプローチは、ニュース記事全体のフレームを分類することに集中し、信号のフレーミングは、しばしば微妙で局所的である。
さらに、自動ニュース分析はセンシティブなドメインであり、既存の分類器は予測に透明性を欠いている。
本稿では,ニュース記事中のイベントと関連するアクタに関するローカル情報を,自動エンコーディングフレームワークを通じて埋め込み,このシグナルを文書レベルのフレーム分類に活用する,新しい半教師モデルに関する2つの問題に対処する。
我々のモデルは従来のフレーム予測モデルよりも優れており、モデルの半教師付き特性を利用したラベル付きトレーニングデータによりさらに性能を向上させることができ、学習したイベントとアクターの埋め込みは文書レベルの予測を直感的に相関させ、微妙で解釈可能な記事フレーム表現を提供する。
関連論文リスト
- Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - SSVOD: Semi-Supervised Video Object Detection with Sparse Annotations [12.139451002212063]
SSVODはビデオのモーションダイナミクスを利用して、スパースアノテーション付き大規模未ラベルフレームを利用する。
提案手法は,ImageNet-VID, Epic-KITCHENS, YouTube-VISの既存手法に比べて,大幅な性能向上を実現している。
論文 参考訳(メタデータ) (2023-09-04T06:41:33Z) - Conflicts, Villains, Resolutions: Towards models of Narrative Media
Framing [19.589945994234075]
我々は、物語の要素を明示的に捉えたコミュニケーション科学から、広く使われているフレーミングの概念化を再考する。
我々は、複雑なアノテーションタスクをより単純なバイナリー質問に分解する効果的なアノテーションパラダイムを適用します。
教師付きおよび半教師付きアプローチによるフレームの自動マルチラベル予測について検討する。
論文 参考訳(メタデータ) (2023-06-03T08:50:13Z) - Interpretable Detection of Out-of-Context Misinformation with Neural-Symbolic-Enhanced Large Multimodal Model [16.348950072491697]
誤報の作者は、ニュース検出システムや偽ニュースを騙すために、マルチメディア以外のコンテンツを使う傾向が強まっている。
この新たなタイプの誤報は、検出だけでなく、個々のモダリティが真の情報に十分近いため、明確化の難しさも増す。
本稿では,不一致のペアと相互の矛盾を同時に識別する,解釈可能なクロスモーダル・デコンテクスト化検出を実現する方法について検討する。
論文 参考訳(メタデータ) (2023-04-15T21:11:55Z) - Distant finetuning with discourse relations for stance classification [55.131676584455306]
そこで本研究では,定位分類のモデルとして,原文から銀ラベルでデータを抽出し,微調整する手法を提案する。
また,様々な段階において微調整に用いるデータのノイズレベルが減少する3段階のトレーニングフレームワークを提案する。
NLPCC 2021共有タスクArgumentative Text Understanding for AI Debaterでは,26の競合チームの中で1位にランクインした。
論文 参考訳(メタデータ) (2022-04-27T04:24:35Z) - Self-Regulated Learning for Egocentric Video Activity Anticipation [147.9783215348252]
自己制御学習(SRL)は、中間表現を連続的に制御し、現在のタイムスタンプのフレームにおける新しい情報を強調する表現を作り出すことを目的としている。
SRLは2つのエゴセントリックなビデオデータセットと2つの第三者のビデオデータセットにおいて、既存の最先端技術よりも大幅に優れています。
論文 参考訳(メタデータ) (2021-11-23T03:29:18Z) - Leveraging Local Temporal Information for Multimodal Scene
Classification [9.548744259567837]
映像シーン分類モデルは、映像の空間的(ピクセル的に)および時間的(フレーム的に)特性を効果的に捉えなければならない。
トークン列が与えられた個々のトークンに対して文脈化された表現を得るように設計された自己注意型トランスフォーマーモデルは、多くのコンピュータビジョンタスクで人気が高まっている。
本稿では,ビデオフレーム間の局所的・大域的時間的関係を利用して,各フレームの文脈的表現をより良くする自己注意ブロックを提案する。
論文 参考訳(メタデータ) (2021-10-26T19:58:32Z) - Wide and Narrow: Video Prediction from Context and Motion [54.21624227408727]
本稿では,これらの相補的属性を統合し,深層ネットワークを通した複雑なピクセルのダイナミックスを予測するフレームワークを提案する。
本研究では,非局所的な近隣表現を集約し,過去のフレーム上の文脈情報を保存するグローバルなコンテキスト伝搬ネットワークを提案する。
また,移動オブジェクトの動作をメモリに格納することで,適応的なフィルタカーネルを生成するローカルフィルタメモリネットワークを考案した。
論文 参考訳(メタデータ) (2021-10-22T04:35:58Z) - Improving Label Quality by Jointly Modeling Items and Annotators [68.8204255655161]
雑音アノテータから基底真理ラベルを学習するための完全ベイズ的枠組みを提案する。
我々のフレームワークは、ラベル分布上の生成的ベイズソフトクラスタリングモデルを古典的なDavidとSkeneのジョイントアノテータデータモデルに分解することでスケーラビリティを保証する。
論文 参考訳(メタデータ) (2021-06-20T02:15:20Z) - Weakly-Supervised Action Localization by Generative Attention Modeling [65.03548422403061]
弱教師付き時間的行動ローカライゼーションは、ビデオレベルの行動ラベルのみを利用できるアクションローカライゼーションモデルを学習する問題である。
条件付き変分自動エンコーダ(VAE)を用いたフレームアテンションのクラス非依存型条件付き確率をモデル化する。
注意に関する条件確率を最大化することにより、アクションフレームと非アクションフレームは適切に分離される。
論文 参考訳(メタデータ) (2020-03-27T14:02:56Z) - Action Localization through Continual Predictive Learning [14.582013761620738]
本稿では,自己監督のための特徴レベルの予測を用いた連続学習に基づく新しいアプローチを提案する。
我々は、CNNエンコーダと組み合わされたLSTMのスタックと、新しいアテンション機構を用いて、ビデオ内のイベントをモデル化し、このモデルを使用して将来のフレームの高レベル機能を予測する。
この自己教師型フレームワークは他のアプローチほど複雑ではないが、ラベリングとローカライゼーションの両方で堅牢な視覚表現を学ぶのに非常に効果的である。
論文 参考訳(メタデータ) (2020-03-26T23:32:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。