Modeling Shared Responses in Neuroimaging Studies through MultiView ICA
- URL: http://arxiv.org/abs/2006.06635v4
- Date: Thu, 24 Dec 2020 10:18:29 GMT
- Title: Modeling Shared Responses in Neuroimaging Studies through MultiView ICA
- Authors: Hugo Richard, Luigi Gresele, Aapo Hyv\"arinen, Bertrand Thirion,
Alexandre Gramfort, Pierre Ablin
- Abstract summary: Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
- Score: 94.31804763196116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Group studies involving large cohorts of subjects are important to draw
general conclusions about brain functional organization. However, the
aggregation of data coming from multiple subjects is challenging, since it
requires accounting for large variability in anatomy, functional topography and
stimulus response across individuals. Data modeling is especially hard for
ecologically relevant conditions such as movie watching, where the experimental
setup does not imply well-defined cognitive operations.
We propose a novel MultiView Independent Component Analysis (ICA) model for
group studies, where data from each subject are modeled as a linear combination
of shared independent sources plus noise. Contrary to most group-ICA
procedures, the likelihood of the model is available in closed form. We develop
an alternate quasi-Newton method for maximizing the likelihood, which is robust
and converges quickly. We demonstrate the usefulness of our approach first on
fMRI data, where our model demonstrates improved sensitivity in identifying
common sources among subjects. Moreover, the sources recovered by our model
exhibit lower between-session variability than other methods.On
magnetoencephalography (MEG) data, our method yields more accurate source
localization on phantom data. Applied on 200 subjects from the Cam-CAN dataset
it reveals a clear sequence of evoked activity in sensor and source space.
The code is freely available at https://github.com/hugorichard/multiviewica.
Related papers
- Coupled generator decomposition for fusion of electro- and magnetoencephalography data [1.7102695043811291]
Data fusion modeling can identify common features across diverse data sources while accounting for source-specific variability.
We introduce the concept of a textitcoupled generator decomposition and demonstrate how it generalizes sparse principal component analysis for data fusion.
arXiv Detail & Related papers (2024-03-02T12:09:16Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
We propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning.
This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models.
Our research includes comprehensive experiments conducted on various datasets.
arXiv Detail & Related papers (2023-08-20T12:43:52Z) - DCID: Deep Canonical Information Decomposition [84.59396326810085]
We consider the problem of identifying the signal shared between two one-dimensional target variables.
We propose ICM, an evaluation metric which can be used in the presence of ground-truth labels.
We also propose Deep Canonical Information Decomposition (DCID) - a simple, yet effective approach for learning the shared variables.
arXiv Detail & Related papers (2023-06-27T16:59:06Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Active Selection of Classification Features [0.0]
Auxiliary data, such as demographics, might help in selecting a smaller sample that comprises the individuals with the most informative MRI scans.
We propose two utility-based approaches for this problem, and evaluate their performance on three public real-world benchmark datasets.
arXiv Detail & Related papers (2021-02-26T18:19:08Z) - Time-Resolved fMRI Shared Response Model using Gaussian Process Factor
Analysis [19.237759421319957]
We introduce a new model, Shared Gaussian Process Factor Analysis (S-GPFA), that discovers shared latent trajectories and subject-specific functional topographies.
We demonstrate the efficacy of our model in revealing ground truth latent structures using simulated data, and replicate experimental performance of time-segment matching and inter-subject similarity on the publicly available Raider and Sherlock datasets.
arXiv Detail & Related papers (2020-06-10T00:15:01Z) - Bayesian Sparse Factor Analysis with Kernelized Observations [67.60224656603823]
Multi-view problems can be faced with latent variable models.
High-dimensionality and non-linear issues are traditionally handled by kernel methods.
We propose merging both approaches into single model.
arXiv Detail & Related papers (2020-06-01T14:25:38Z) - Ensemble Deep Learning on Large, Mixed-Site fMRI Datasets in Autism and
Other Tasks [0.1160208922584163]
We train a convolutional neural network (CNN) with the largest multi-source, functional MRI (fMRI) connectomic dataset ever compiled.
Our study finds that deep learning models that distinguish ASD from TD controls focus broadly on temporal and cerebellar connections.
arXiv Detail & Related papers (2020-02-14T17:28:16Z) - Multi-site fMRI Analysis Using Privacy-preserving Federated Learning and
Domain Adaptation: ABIDE Results [13.615292855384729]
To train a high-quality deep learning model, the aggregation of a significant amount of patient information is required.
Due to the need to protect the privacy of patient data, it is hard to assemble a central database from multiple institutions.
Federated learning allows for population-level models to be trained without centralizing entities' data.
arXiv Detail & Related papers (2020-01-16T04:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.