Prediction, Selection, and Generation: Exploration of Knowledge-Driven
Conversation System
- URL: http://arxiv.org/abs/2104.11454v2
- Date: Mon, 26 Apr 2021 02:19:37 GMT
- Title: Prediction, Selection, and Generation: Exploration of Knowledge-Driven
Conversation System
- Authors: Cheng Luo, Dayiheng Liu, Chanjuan Li, Li Lu, Jiancheng Lv
- Abstract summary: In open-domain conversational systems, it is important but challenging to leverage background knowledge.
We combine the knowledge bases and pre-training model to propose a knowledge-driven conversation system.
We study the performance factors that maybe affect the generation of knowledge-driven dialogue.
- Score: 24.537862151735006
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In open-domain conversational systems, it is important but challenging to
leverage background knowledge. We can use the incorporation of knowledge to
make the generation of dialogue controllable, and can generate more diverse
sentences that contain real knowledge. In this paper, we combine the knowledge
bases and pre-training model to propose a knowledge-driven conversation system.
The system includes modules such as dialogue topic prediction, knowledge
matching and dialogue generation. Based on this system, we study the
performance factors that maybe affect the generation of knowledge-driven
dialogue: topic coarse recall algorithm, number of knowledge choices,
generation model choices, etc., and finally made the system reach
state-of-the-art. These experimental results will provide some guiding
significance for the future research of this task. As far as we know, this is
the first work to study and analyze the effects of the related factors.
Related papers
- PK-Chat: Pointer Network Guided Knowledge Driven Generative Dialogue
Model [79.64376762489164]
PK-Chat is a Pointer network guided generative dialogue model, incorporating a unified pretrained language model and a pointer network over knowledge graphs.
The words generated by PK-Chat in the dialogue are derived from the prediction of word lists and the direct prediction of the external knowledge graph knowledge.
Based on the PK-Chat, a dialogue system is built for academic scenarios in the case of geosciences.
arXiv Detail & Related papers (2023-04-02T18:23:13Z) - Position Matters! Empirical Study of Order Effect in Knowledge-grounded
Dialogue [54.98184262897166]
We investigate how the order of the knowledge set can influence autoregressive dialogue systems' responses.
We propose a simple and novel technique to alleviate the order effect by modifying the position embeddings of knowledge input.
arXiv Detail & Related papers (2023-02-12T10:13:00Z) - Social Influence Dialogue Systems: A Scoping Survey of the Efforts
Towards Influence Capabilities of Dialogue Systems [50.57882213439553]
Social influence dialogue systems are capable of persuasion, negotiation, and therapy.
There exists no formal definition or category for dialogue systems with these skills.
This study serves as a comprehensive reference for social influence dialogue systems to inspire more dedicated research and discussion in this emerging area.
arXiv Detail & Related papers (2022-10-11T17:57:23Z) - Dynamically Retrieving Knowledge via Query Generation for informative
dialogue response [7.196104022425989]
We design a knowledge-driven dialogue system named DRKQG (emphDynamically Retrieving Knowledge via Query Generation for informative dialogue response)
First, a time-aware mechanism is utilized to capture context information and a query can be generated for retrieving knowledge.
Then, we integrate copy Mechanism and Transformers, which allows the response generation module produces responses derived from the context and retrieved knowledge.
arXiv Detail & Related papers (2022-07-30T03:05:43Z) - DialoKG: Knowledge-Structure Aware Task-Oriented Dialogue Generation [9.186215038100904]
We propose DialoKG, a novel task-oriented dialogue system that effectively incorporates knowledge into a language model.
Our proposed system views relational knowledge as a knowledge graph and introduces a structure-aware knowledge embedding technique.
An empirical evaluation demonstrates the effectiveness of DialoKG over state-of-the-art methods on several standard benchmark datasets.
arXiv Detail & Related papers (2022-04-19T22:26:18Z) - Knowledge-Grounded Dialogue Generation with a Unified Knowledge
Representation [78.85622982191522]
Existing systems perform poorly on unseen topics due to limited topics covered in the training data.
We present PLUG, a language model that homogenizes different knowledge sources to a unified knowledge representation.
It can achieve comparable performance with state-of-the-art methods under a fully-supervised setting.
arXiv Detail & Related papers (2021-12-15T07:11:02Z) - Retrieval-Free Knowledge-Grounded Dialogue Response Generation with
Adapters [52.725200145600624]
We propose KnowExpert to bypass the retrieval process by injecting prior knowledge into the pre-trained language models with lightweight adapters.
Experimental results show that KnowExpert performs comparably with the retrieval-based baselines.
arXiv Detail & Related papers (2021-05-13T12:33:23Z) - Recent Advances in Deep Learning-based Dialogue Systems [12.798560005546262]
We mainly focus on the deep learning-based dialogue systems.
This survey is the most comprehensive and upto-date one at present in the area of dialogue systems and dialogue-related tasks.
arXiv Detail & Related papers (2021-05-10T14:07:49Z) - Sequential Latent Knowledge Selection for Knowledge-Grounded Dialogue [51.513276162736844]
We propose a sequential latent variable model as the first approach to this matter.
The model named sequential knowledge transformer (SKT) can keep track of the prior and posterior distribution over knowledge.
arXiv Detail & Related papers (2020-02-18T11:59:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.