論文の概要: Turkish Text Classification: From Lexicon Analysis to Bidirectional
Transformer
- arxiv url: http://arxiv.org/abs/2104.11642v1
- Date: Fri, 21 Aug 2020 13:30:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 21:02:13.096496
- Title: Turkish Text Classification: From Lexicon Analysis to Bidirectional
Transformer
- Title(参考訳): トルコ語テキスト分類 : 辞書分析から双方向変換へ
- Authors: Deniz Kavi
- Abstract要約: 本稿では, 辞書解析, サポートベクターマシン, テキスト分類および感情分析のタスクにおける極度勾配向上の成功をトルコ語で評価する。
トルコ語テキスト分類の従来の手法よりも優れた事前学習型トランスフォーマーに基づく分類器を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Text classification has seen an increased use in both academic and industry
settings. Though rule based methods have been fairly successful, supervised
machine learning has been shown to be most successful for most languages, where
most research was done on English. In this article, the success of lexicon
analysis, support vector machines, and extreme gradient boosting for the task
of text classification and sentiment analysis are evaluated in Turkish and a
pretrained transformer based classifier is proposed, outperforming previous
methods for Turkish text classification. In the context of text classification,
all machine learning models proposed in the article are domain-independent and
do not require any task-specific modifications.
- Abstract(参考訳): テキスト分類は学術的にも産業的にも利用が増加している。
ルールベースの手法はかなり成功したが、教師付き機械学習はほとんどの言語で最も成功し、ほとんどの研究は英語で行われた。
本稿では,トルコ語における語彙分析,サポートベクターマシン,テキスト分類・感情分析タスクにおける極度勾配強調手法の成功を評価し,トルコ語テキスト分類の従来の手法を上回って,事前学習されたトランスフォーマベース分類器を提案する。
テキスト分類の文脈では、記事で提案されているすべての機械学習モデルはドメインに依存しず、タスク固有の修正を必要としない。
関連論文リスト
- Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
最近の基礎言語モデルでは、ゼロショットや少数ショットの設定で多くのNLPタスクで最先端のパフォーマンスが示されている。
より標準的なアプローチよりもこれらのモデルの利点は、自然言語(prompts)で書かれた命令を理解する能力である。
これにより、アノテーション付きインスタンスが限られているドメインのテキスト分類問題に対処するのに適している。
論文 参考訳(メタデータ) (2024-03-26T12:47:39Z) - A Dataset and Strong Baselines for Classification of Czech News Texts [0.0]
チェコ最大の分類データセットであるCZE-NEC(CZE-NEC)について述べる。
我々は、ニュースソース、ニュースカテゴリ、推論された著者の性別、週の日という4つの分類タスクを定義した。
本研究では,市販の大規模生成言語モデルにおいて,言語固有の事前学習エンコーダ解析が優れていることを示す。
論文 参考訳(メタデータ) (2023-07-20T07:47:08Z) - T3L: Translate-and-Test Transfer Learning for Cross-Lingual Text
Classification [50.675552118811]
言語間テキスト分類は通常、様々な言語で事前訓練された大規模多言語言語モデル(LM)に基づいて構築される。
本稿では,古典的な「翻訳とテスト」パイプラインを再考し,翻訳と分類の段階を適切に分離することを提案する。
論文 参考訳(メタデータ) (2023-06-08T07:33:22Z) - Enhancing Pashto Text Classification using Language Processing
Techniques for Single And Multi-Label Analysis [0.0]
本研究では,Pashtoテキストの自動分類システムの構築を目的とする。
平均テスト精度は94%だった。
DistilBERTのような事前訓練された言語表現モデルの使用は、有望な結果を示した。
論文 参考訳(メタデータ) (2023-05-04T23:11:31Z) - HanoiT: Enhancing Context-aware Translation via Selective Context [95.93730812799798]
コンテキスト対応ニューラルネットワーク翻訳は、文書レベルのコンテキストを使用して翻訳品質を改善することを目的としている。
無関係または自明な単語は、いくつかのノイズをもたらし、モデルが現在の文と補助的な文脈の関係を学ぶのを邪魔する可能性がある。
そこで本稿では,階層的選択機構を備えたエンド・ツー・エンドのエンコーダ・デコーダモデルを提案する。
論文 参考訳(メタデータ) (2023-01-17T12:07:13Z) - Detecting Text Formality: A Study of Text Classification Approaches [78.11745751651708]
本研究は,統計的,ニューラルベース,トランスフォーマーベースの機械学習手法に基づく形式性検出手法の体系的研究を初めて行う。
単言語,多言語,言語横断の3種類の実験を行った。
本研究は,モノリンガルおよび多言語形式分類タスクのためのトランスフォーマーベースモデルに対するChar BiLSTMモデルの克服を示す。
論文 参考訳(メタデータ) (2022-04-19T16:23:07Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Twitterで公開された短いテキストは、豊富な情報源として大きな注目を集めている。
非公式な言語スタイルや騒々しい言語スタイルといったそれらの固有の特徴は、多くの自然言語処理(NLP)タスクに挑戦し続けている。
本研究では,22データセットの豊富なコレクションを用いて,ツイートに表される感情を識別する既存言語モデルの評価を行った。
論文 参考訳(メタデータ) (2021-05-29T21:05:28Z) - Method of the coherence evaluation of Ukrainian text [0.0]
ウクライナ語のテキストコヒーレンス測定法について分析した。
訓練と試験はウクライナのテキストのコーパスで行われている。
テキストコヒーレンス評価のための2つの典型的なタスクを実行することで、テスト手順を実行する。
論文 参考訳(メタデータ) (2020-10-31T16:48:55Z) - The Impact of Indirect Machine Translation on Sentiment Classification [6.719549885077474]
本稿では,顧客からのフィードバックを他の言語に翻訳する機械翻訳システムを提案する。
直接翻訳が必ずしも可能であるとは限らないため、翻訳された文に対する自動分類器の性能について検討する。
提案する感情分類システムの性能を解析し、翻訳文の分類の利点と欠点について考察する。
論文 参考訳(メタデータ) (2020-08-25T20:30:21Z) - Deep Learning Based Text Classification: A Comprehensive Review [75.8403533775179]
本稿では,近年開発されたテキスト分類のための150以上のディープラーニングモデルについてレビューする。
また、テキスト分類に広く使われている40以上の一般的なデータセットの要約も提供する。
論文 参考訳(メタデータ) (2020-04-06T02:00:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。